Jiawen ZHU, Xiaodong ZENG, Minghua ZHANG, Yongjiu DAI, Duoying JI, Fang LI, Qian ZHANG, He ZHANG, Xiang SONG. 2018: Evaluation of the New Dynamic Global Vegetation Model in CAS-ESM. Adv. Atmos. Sci, 35(6): 659-670., https://doi.org/10.1007/s00376-017-7154-7
Citation: Jiawen ZHU, Xiaodong ZENG, Minghua ZHANG, Yongjiu DAI, Duoying JI, Fang LI, Qian ZHANG, He ZHANG, Xiang SONG. 2018: Evaluation of the New Dynamic Global Vegetation Model in CAS-ESM. Adv. Atmos. Sci, 35(6): 659-670., https://doi.org/10.1007/s00376-017-7154-7

Evaluation of the New Dynamic Global Vegetation Model in CAS-ESM

  • In the past several decades, dynamic global vegetation models (DGVMs) have been the most widely used and appropriate tool at the global scale to investigate vegetation-climate interactions. At the Institute of Atmospheric Physics, a new version of DGVM (IAP-DGVM) has been developed and coupled to the Common Land Model (CoLM) within the framework of the Chinese Academy of Sciences' Earth System Model (CAS-ESM). This work reports the performance of IAP-DGVM through comparisons with that of the default DGVM of CoLM (CoLM-DGVM) and observations. With respect to CoLM-DGVM, IAP-DGVM simulated fewer tropical trees, more "needleleaf evergreen boreal tree" and "broadleaf deciduous boreal shrub", and a better representation of grasses. These contributed to a more realistic vegetation distribution in IAP-DGVM, including spatial patterns, total areas, and compositions. Moreover, IAP-DGVM also produced more accurate carbon fluxes than CoLM-DGVM when compared with observational estimates. Gross primary productivity and net primary production in IAP-DGVM were in better agreement with observations than those of CoLM-DGVM, and the tropical pattern of fire carbon emissions in IAP-DGVM was much more consistent with the observation than that in CoLM-DGVM. The leaf area index simulated by IAP-DGVM was closer to the observation than that of CoLM-DGVM; however, both simulated values about twice as large as in the observation. This evaluation provides valuable information for the application of CAS-ESM, as well as for other model communities in terms of a comparative benchmark.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return