Numerical Study on Dry Deposition Processes in Canopy Layer
-
Graphical Abstract
-
Abstract
A coupling model between the canopy layer (CL) and atmospheric boundary layer (ABL) for the study of dry deposition velocity is developed. The model consists of six parts: chemical species conservation equation including absorptive factor; the species uptake action including detailed vertical variation of absorptive element in CL; momen-tum exchange in CL which is represented by a first-order closure momentum equation with an additional larger-scale diffusive term; momentum exchange in ABL which is described by a complete set of the ABL turbulent statistic parameters; absorptivity (or solubility or reflection) at the surface including effects of the physical and chemi-cal characters of the species, land type, seasonal and diurnal variations of the meteorological variables; and deposition velocity derived by distributions of the species with height in CL. Variational rules of the concentration and deposi-tion velocity with both height and time are simulated with the model for both corn and forest canopies. Results pre-dicted with the bulk deposition velocity derived in the paper consist well with experimental data.
-
-