Dependence of the Accuracy of Precipitation and Cloud Simulation on Temporal and Spatial Scales
-
Graphical Abstract
-
Abstract
Precipitation and associated cloud hydrometeors have large temporal and spatial variability, which makes accurate quantitative precipitation forecasting difficult. Thus, dependence of accurate precipitation and associated cloud simulation on temporal and spatial scales becomes an important issue. We report a cloud-resolving modeling analysis on this issue by comparing the control experiment with experiments perturbed by initial temperature, water vapor, and cloud conditions. The simulation is considered to be accurate only if the root-mean-squared difference between the perturbation experiments and the control experiment is smaller than the standard deviation. The analysis may suggest that accurate precipitation and cloud simulations cannot be obtained on both fine temporal and spatial scales simultaneously, which limits quantitative precipitation forecasting. The accurate simulation of water vapor convergence could lead to accurate precipitation and cloud simulations on daily time scales, but it may not be beneficial to precipitation and cloud simulations on hourly time scales due to the dominance of cloud processes.
-
-