Effect of Baroclinicity on Vortex Axisymmetrization. Part I: Barotropic Basic Vortex
-
Graphical Abstract
-
Abstract
The barotropic and baroclinic disturbances axisymmetrized by the barotropic basic vortex are examined in an idealized modeling framework consisting of two layers. Using a Wentzel-Kramers-Brillouin approach, the radial propagation of a baroclinic disturbance is shown to be slower than a barotropic disturbance, resulting in a slower linear axisymmetrization for baroclinic disturbances. The slower-propagating baroclinic waves also cause more baroclinic asymmetric kinetic energy to be transferred directly to the barotropic symmetric vortex than from barotropic disturbances, resulting in a faster axisymmetrization process in the nonlinear baroclinic wave case than in the nonlinear barotropic wave case.
-
-