Fang, C. X., Y. Liu, Q. F. Cai, and H. M. Song, 2021: Why does extreme rainfall occur in central China during the summer of 2020 after a weak El Niño? Adv. Atmos. Sci., 38(12), 2067−2081, https://doi.org/10.1007/s00376-021-1009-y.
Citation: Fang, C. X., Y. Liu, Q. F. Cai, and H. M. Song, 2021: Why does extreme rainfall occur in central China during the summer of 2020 after a weak El Niño? Adv. Atmos. Sci., 38(12), 2067−2081, https://doi.org/10.1007/s00376-021-1009-y.

Why Does Extreme Rainfall Occur in Central China during the Summer of 2020 after a Weak El Niño?

  • In summer 2020, extreme rainfall occurred throughout the Yangtze River basin, Huaihe River basin, and southern Yellow River basin, which are defined here as the central China (CC) region. However, only a weak central Pacific (CP) El Niño happened during winter 2019/20, so the correlations between the El Niño–Southern Oscillation (ENSO) indices and ENSO-induced circulation anomalies were insufficient to explain this extreme precipitation event. In this study, reanalysis data and numerical experiments are employed to identify and verify the primary ENSO-related factors that cause this extreme rainfall event. During summer 2020, unusually strong anomalous southwesterlies on the northwest side of an extremely strong Northwest Pacific anticyclone anomaly (NWPAC) contributed excess moisture and convective instability to the CC region, and thus, triggered extreme precipitation in this area. The tropical Indian Ocean (TIO) has warmed in recent decades, and consequently, intensified TIO basinwide warming appears after a weak El Niño, which excites an extremely strong NWPAC via the pathway of the Indo-western Pacific Ocean capacitor (IPOC) effect. Additionally, the ENSO event of 2019/20 should be treated as a fast-decaying CP El Niño rather than a general CP El Niño, so that the circulation and precipitation anomalies in summer 2020 can be better understood. Last, the increasing trend of tropospheric temperature and moisture content in the CC region after 2000 is also conducive to producing heavy precipitation.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return