Superiority of a Convolutional Neural Network Model over Dynamical Models in Predicting Central Pacific ENSO
-
Graphical Abstract
-
Abstract
The application of deep learning is fast developing in climate prediction, in which El Niño–Southern Oscillation (ENSO), as the most dominant disaster-causing climate event, is a key target. Previous studies have shown that deep learning methods possess a certain level of superiority in predicting ENSO indices. The present study develops a deep learning model for predicting the spatial pattern of sea surface temperature anomalies (SSTAs) in the equatorial Pacific by training a convolutional neural network (CNN) model with historical simulations from CMIP6 models. Compared with dynamical models, the CNN model has higher skill in predicting the SSTAs in the equatorial western-central Pacific, but not in the eastern Pacific. The CNN model can successfully capture the small-scale precursors in the initial SSTAs for the development of central Pacific ENSO to distinguish the spatial mode up to a lead time of seven months. A fusion model combining the predictions of the CNN model and the dynamical models achieves higher skill than each of them for both central and eastern Pacific ENSO.
-
-