Nonlinear Three-Wave Interaction among Barotropic Rossby Waves in a Large-scale Forced Barotropic Flow
-
Graphical Abstract
-
Abstract
In this paper, the coupling equations describing nonlinear three-wave interaction among Rossby waves including the forcing of an external vorticity source are obtained. Under certain conditions, the coupling equations with a constant amplitude forcing, the stability analysis indi-cates that when the amplitude of the external forcing increases to a certain extent, a pitchfork bifurcation occurs. Also, it is shown from numerical results that the bifurcation can lead to chaotic behavior of “strange” attractor. For the obtained three-variable equation, when the amplitude of modulated external forcing gradually increases, a period-doubling bifurcation is found to lead to chaotic behavior. Thus, in a nonlinear three-wave coupling model in the large-scale forced barotropic atmospheric flow, chaotic behavior can be observed. This chaotic behavior can explain in part 30-60-day low-frequency oscillations observed in mid-high latitudes.
-
-