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ABSTRACT

Despite  the  maturity  of  ensemble  numerical  weather  prediction  (NWP),  the  resulting  forecasts  are  still,  more  often
than not, under-dispersed. As such, forecast calibration tools have become popular. Among those tools, quantile regression
(QR) is highly competitive in terms of both flexibility and predictive performance. Nevertheless, a long-standing problem
of  QR  is  quantile  crossing,  which  greatly  limits  the  interpretability  of  QR-calibrated  forecasts.  On  this  point,  this  study
proposes a non-crossing quantile regression neural network (NCQRNN), for calibrating ensemble NWP forecasts into a set
of  reliable  quantile  forecasts  without  crossing.  The  overarching  design  principle  of  NCQRNN  is  to  add  on  top  of  the
conventional  QRNN  structure  another  hidden  layer,  which  imposes  a  non-decreasing  mapping  between  the  combined
output from nodes of the last hidden layer to the nodes of the output layer, through a triangular weight matrix with positive
entries. The empirical part of the work considers a solar irradiance case study, in which four years of ensemble irradiance
forecasts  at  seven  locations,  issued  by  the  European  Centre  for  Medium-Range  Weather  Forecasts,  are  calibrated  via
NCQRNN, as well as via an eclectic mix of benchmarking models, ranging from the naïve climatology to the state-of-the-
art deep-learning and other non-crossing models. Formal and stringent forecast verification suggests that the forecasts post-
processed via  NCQRNN attain  the  maximum sharpness  subject  to  calibration,  amongst  all  competitors.  Furthermore,  the
proposed conception to resolve quantile crossing is remarkably simple yet general, and thus has broad applicability as it can
be integrated with many shallow- and deep-learning-based neural networks.

Key words: ensemble  weather  forecasting, forecast  calibration, non-crossing  quantile  regression  neural  network, CORP
reliability diagram, post-processing
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Article Highlights:

•  A non-crossing quantile regression neural network (NCQRNN) is proposed.
•  NCQRNN is utilized to calibrate ensemble weather forecasts.
•  The CORP reliability diagram is employed to evaluate the predictive reliability.
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•  Valuable insights on weather forecast calibration are obtained.
 

 
  

1.    Introduction

The way in which the notion of probability is embedded
into  weather  forecasting  differs  from  all  other  forecasting
domains. Numerical weather prediction (NWP) ensemble fore-
casts  are  derived  by  perturbing  the  analysis  and  evolving
each perturbed set of initial conditions forward in time accord-
ing  to  the  governing laws of  dynamics  and physics  (Bauer
et al., 2015). Even though ensemble weather forecasting has
matured over the past half-century or so, the produced fore-
casts are still often under-dispersed (Vannitsem et al., 2018;
Lauret  et al.,  2019),  resulting  in  an  underestimation  of  the
uncertainty  (Fortin  et al.,  2006).  Consequently,  various
ways  of  calibrating  those  under-dispersed  forecasts  find
their  relevance.  Statistically,  although other  context-depen-
dent definitions exist (e.g., Mayer and Yang, 2023a), calibra-
tion (also known as reliability)  mostly refers  to the consis-
tency between the distributional forecasts and the correspond-
ing observations. Informally, calibration means that the nomi-
nal coverage rate of prediction intervals (PIs) is equal to the
empirical  one,  e.g.,  PIs  of  80% coverage rate should cover
80% of the observations (Lauret et al., 2019). According to
the  typology  of Yang  and  van  der  Meer (2021),  who  con-
ducted a detailed review of post-processing techniques, cali-
bration is a type of probabilistic-to-probabilistic (P2P) post-
processing technique that can improve the reliability of uncali-
brated raw ensembles via (1) distributional regression meth-
ods  such  as  ensemble  model  output  statistics  (EMOS),  (2)
methods  of  dressing,  and  (3)  quantile  regressions  (QRs).
These three (classes of) methods are briefly reviewed in the
following  three  paragraphs.  Another  detailed  overview  of
post-processing methods and recent developments was con-
ducted by Vannitsem et al. (2021).

EMOS is a classic P2P post-processing method first pro-
posed by Gneiting et al. (2005). It assumes that the predictive
distribution of the response variable is normal, which can be
written as 

Yt ∼ N
m0+

p∑
i=1

mixt,i,n0+n1s2
t

 , (1)

Yt {xt,1, xt,2, . . . , xt,p}
t s2

t {m0,1, . . . ,
mp,n0,n1}

where  is the response variable,  are ensem-
ble  members  at  time ,  with  variance ,  and 

 are EMOS model parameters, which can be esti-
mated by maximizing the likelihood or minimizing the contin-
uous  ranked  probability  score  (CRPS).  Moving  beyond  its
basic form, one should note that the Gaussian predictive distri-
bution  can  be  replaced  by  other  parametric  distributions,
although  such  extensions  should  not  concern  the  present
work. Regardless, EMOS, and more generally, distributional
regression,  produce  parametric  predictive  distributions,  of
which the predictive performance depends heavily upon the

validity of the distributional assumption made.

k

The core  idea of  the  methods of  dressing is  to  modify
each member  of  a  dynamical  ensemble  forecast  with  some
past  errors  to  improve  reliability. Roulston  and  Smith
(2003)  proposed  a  method  called “best-member  dressing,”
in which each ensemble member is dressed with errors resam-
pled from the past “best-member” errors. Wang and Bishop
(2005)  found  that  results  of  the  best-member  dressing  still
lack  reliability,  and  proposed  a  2nd-moment-constrained
dressing  method.  In  another  attempt, Fortin  et al. (2006)
sorted  the  members  of  each  ensemble,  and  then  calculated
the best-member errors for the ensembles whose best mem-
bers are the th ensemble member. Finally, Bayesian model
averaging (BMA) can also be considered as a form of dress-
ing. It dresses a distribution or a probability density distribu-
tion  (PDF)  onto  each  ensemble  member,  and  then  linearly
combines all dressed PDFs to obtain the final predictive distri-
bution (Raftery et al., 2005), which is given by 

gt (z) =
p∑

i=1

ŵi ft,i
(
z|zt,i

)
, (2)

ft,i
(
z|zt,i

)
i

gt (z) wi

z

where  is  the  dressed  PDF  for  the th  member,
 is the PDF of the combined forecast,  is the combina-

tion weight, and  is a generic variable representing the argu-
ment of density functions. The predictive distributions result-
ing from BMA are semiparametric in nature, and are therefore
slightly more flexible than EMOS-based parametric predic-
tive distributions.

τ ∈ [0,1]

In  practice,  it  is  difficult,  or  not  possible,  to  conclude
with absolute certainty whether a variable of interest strictly
follows  a  certain  (semi)  parametric  distribution.  In  this
regard,  QR  as  proposed  by Koenker  and  Bassett (1978),
which  requires  no  distributional  assumption,  is  often  pre-
ferred and can usually achieve better calibration performance
than the  other  two classes  of  P2P post-processing methods
(Bremnes, 2004; Yagli et al.,  2020). Differing from regular
regression problems, in which the conditional mean is esti-
mated, the target variable of QR is the conditional quantile.
In terms of parameter estimation, instead of minimizing the
sum  of  square  errors,  QR  minimizes  the  sum  of  pinball
losses,  which  depends  on  some  quantile  level .
Since  QR  is  a  regression,  it  has  many  statistical  and
machine-learning variants. In the case of the former, one pos-
sible  way  is  to  introduce  regularization  into  QR,  which
gives rise to penalized QR. In the case of the latter, the exten-
sions  are  typified  by  quantile  regression  neural  network
(QRNN; Cannon,  2011)  and  quantile  regression  forest
(QRF; Meinshausen, 2006; Taillardat et al., 2016).

A long-standing problem of QR-based methods, neverthe-
less, is quantile crossing, which greatly limits the interpretabil-
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τ1 τ2 τ1 < τ2

qτ1 > qτ2

ity  of  the  regression  results.  More  specifically,  given  two
quantile levels  and , ,  quantile crossing occurs
if  (Moon  et al.,  2021).  This  problem  violates  the
basic  principle  that  the  cumulative  distribution  function
(CDF)  should  be  monotonically  increasing  (Moon  et al.,
2021). Chernozhukov  et al. (2010)  bypassed  this  problem
by simply reordering those nonmonotone quantile forecasts.
Although  the  reordered  estimates  are  found  to  be  close  to
the true quantiles, it does not extend to extreme cases as to
cover heavy tails  beyond the sample (Kithinji  et al.,  2021).
Evidently, a method that can directly produce ordered quan-
tiles  without  reordering  would  be  much  more  reliable  and
thus desirable.  So far,  numerous non-crossing QR methods
have been proposed. For instance, Liu and Wu (2009) esti-
mated quantile functions in a stepwise fashion. When estimat-
ing the quantile function of the next quantile level, inequality
constraints  are  imposed  on  the  regression  coefficients  to
ensure  that  the  estimated  quantile  equations  do  not  cross
with  the  current  one. Bondell  et al. (2010)  generated  non-
crossing quantiles of endpoints of a convex hull by imposing
constraints  on  the  regression  coefficients  of  linear  quantile
regression  (LQR),  and  assumed  that  the  quantiles  of  the
points inside convex hull were linear combinations of those
of endpoints. In El Adlouni and Baldé (2019), Bayesian non-
crossing  QR  was  introduced  for  heavy-tailed  distributions
based on extreme index estimation. However, most non-cross-
ing  methods  are  only  applicable  to  LQR and  are  not  valid
for  complex  machine-learning  regression  models  such  as
QRNN, which therefore greatly confines their generalization
and uptake.

The first non-crossing remedy for QRNNs was proposed
by Cannon (2018), which constrained the parameters of all
hidden and output layers to be positive and used monotone
activation  functions  to  avoid  the  crossing  problem.  How-
ever, since all the layers were imposed with restrictions, this
approach is not applicable to other models,  except feedfor-
ward  neural  networks. Moon  et al. (2021)  developed
another  strategy  preventing  quantile  crossing  by  imposing
inequality  constraints  on  the  weights  of  the  output  layer.
The proposed non-crossing strategy is more flexible, but the
trained model still requires post-correction. Whilst modifying
the  network  setting  is  one  approach,  one  can  also  address
quantile crossing by working with the predictive distribution
itself.  For  instance,  both Gasthaus  et al. (2019)  and
Bremnes (2019) used splines to approximate a monotonically
increasing CDF, in which error may be introduced in conver-
sion  from  the  CDF  to  quantiles,  and  performance  depends
on the number of knots. In Bremnes (2020), Bernstein basis
polynomials  were  employed  to  approximate  an  increasing
CDF,  but  this  approach  is  still  confronted  by  those  issues
that confronted Gasthaus et al. (2019) and Bremnes (2019).

After reviewing the existing literature, a couple of facts
can  be  consolidated.  First,  modern  ensemble  weather  fore-
casts  from NWP are  often  under-dispersed,  which  necessi-
tates post-processing in the style of calibration. Second, the
quantile crossing problem limits the interpretability of QR-cal-

ibrated forecasts; yet, existing non-crossing methods are suit-
able only for certain QR methods and are not generally appli-
cable.  On  these  points,  this  study  proposes  a  flexible  and
unconstrained  non-crossing  quantile  regression  neural  net-
work (NCQRNN) model,  for  calibrating  ensemble  weather
forecasts into a set of reliable quantile forecasts without cross-
ing. The proposed non-crossing strategy is remarkably simple
yet general, and thus has broad applicability and can be inte-
grated with other shallow- and deep-learning-based neural net-
works.

Whilst  the  proposed  NCQRNN  is  applicable  to  all
weather parameters, the empirical part of the work presents
a case study on solar irradiance, which is the most influential
weather parameter for photovoltaic technologies. More specif-
ically,  four  years  of  ensemble  global  horizontal  irradiance
(GHI) forecasts at seven locations in the contiguous United
States  (CONUS),  as  issued  by  the  European  Centre  for
Medium-Range Weather Forecasts (ECMWF), are calibrated
via NCQRNN, as well as via an eclectic mix of benchmarking
models, including one naïve reference model, two parametric
models,  and  ten  nonparametric  models.  It  is  worth  noting
that  many  of  the  benchmarking  models  considered  herein
can be regarded as state-of-the-art. Through a series of formal
inquiries on calibration and sharpness of the various versions
of  post-processed  forecasts,  NCQRNN is  found  to  possess
general superiority over all benchmarks.

The rest of this article is organized as follows. Section
2  describes  the  two  datasets  that  respectively  contain  the
ensemble GHI forecasts and the satellite-derived irradiance
data,  which are  to  be used as  observations.  The NCQRNN
is proposed in section 3,  and three simplified variants  of  it
are  also  introduced  therein.  Section  4  describes  the  bench-
marking models and evaluation metrics used to gauge the per-
formance of  the proposed approach.  Section 5 presents  the
main experimental results and analysis. Discussions on possi-
ble  performance improvements  and the  effect  of  the  input-
sample dimensions are given in section 6. Section 7 concludes
the study.
 

2.    Data

This study revolves around GHI data relevant to seven
locations,  in  which  the  Surface  Radiation  Budget  Network
(SURFRAD)  stations  are  situated  (Yagli  et al.,  2019).
SURFRAD covers five different climate zones in CONUS,
and  is  one  of  the  highest-quality  radiation  monitoring  net-
works in the world (Yang et al., 2022a). Although these five
climate zones are part of the Köppen–Geiger climate classifi-
cation (Kottek et al., 2006), they already include most of the
five  main  climates.  Digging  deeper  into  the  calibration  for
all the climate classes is beyond the scope of this study. The
SURFRAD station names and their abbreviations are as fol-
lows:  Bondville,  Illinois  (BON);  Desert  Rock,  Nevada
(DRA); Fort Peck, Montana (FPK); Goodwin Creek, Missis-
sippi  (GWN);  Pennsylvania  State  University,  Pennsylvania
(PSU); Sioux Falls, South Dakota (SXF); and Table Moun-
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tain, Boulder, Colorado (TBL). For most weather variables,
NWP  forecasts  are  usually  verified  against  ground-based
observations.  Notwithstanding,  because  high-quality  irradi-
ance monitoring networks like  SURFRAD are  exceedingly
rare, it is thought more practical to use satellite-derived irradi-
ance as the “truth” against which NWP irradiance forecasts
are  verified  (Yang,  2019a; Yang  and  Perez,  2019; Yagli
et al., 2022). In this regard, the hourly GHI is acquired from
the  National  Solar  Radiation  Database  (NSRDB),  over  a
period of  four  years  (2017–20).  As for  the ensemble NWP
forecasts,  they  are  solicited  from  the  ECMWF’s  Set  III –
Atmospheric  model  Ensemble  15-day  forecast  (ENS)
model, collocating with the SURFRAD locations and cover-
ing the same four-year period. In summary, the ENS GHI is
used as the input into NCQRNN and other calibration mod-
els,  and  the  NSRDB GHI  is  used  partly  as  training  targets
and partly as verifications for the calibrated forecasts—data
splitting is discussed more below.
 

2.1.    NSRDB

NSRDB  is  developed  by  the  National  Renewable
Energy Laboratory (NREL),  and its  latest  version provides
gridded  satellite-derived  weather  data  over  the  entire
CONUS (Yang and Bright, 2020). The GHI data of NSRDB
are generated by the Physical Solar Model, which is a physical
satellite-to-irradiance model, at 30-min intervals, with a spa-
tial  resolution  of  4  km  ×  4  km.  The  accuracy  of  NSRDB
GHI  has  been  verified  numerous  times  in  the  literature
(Yang,  2018a, 2019a);  for  instance, Yang (2018a)  showed
that the accuracy of hourly NSRDB GHI ranges from 8.9%
to  18.7%  in  terms  of  normalized  root-mean-square  error,
which  is  significantly  lower  than  the  typical  NWP-based
GHI forecast  error,  thus confirming the suitability of using
NSRDB GHI as observations for the calibrated forecasts.

NSRDB  GHI  can  be  downloaded  through  modifying
the (sample) Python script provided by NREL or using the
R  function  in  the  SolarData  package  of Yang (2018b).  In
this  study,  the  NSRDB  GHI  data  from  the  nearest  grid
points  of  seven  SURFRAD stations  are  used,  the  temporal
coverage of  which is  from 2017 to 2020,  with a  resolution

of 1 h. More specifically, it is noted that only those GHI esti-
mates at HH:30 time stamps are downloaded, as those esti-
mates represent the “average” irradiance conditions over the
respective hours. Table 1 presents the geographical informa-
tion and some statistics of NSRDB GHI. 

2.2.    ECMWF’s ENS

The  ensemble  GHI  forecasts  used  in  this  study  are
issued by ENS, which is a product of ECMWF. In contrast
to the product “Set I – Atmospheric Model high resolution
10-day  forecast  (HRES),” which  issues  the  best-guess  (or
deterministic) forecast, ENS issues 50-member ensemble fore-
casts at an hourly resolution; this is achieved by running the
HRES model  with  slightly  perturbed  initial  conditions  at  a
reduced resolution. ENS runs are initiated four times a day,
0000, 0600, 1200, and 1800 UTC, respectively. Each run pro-
vides forecasts up to 15 days ahead. The reader is referred to
the official documentation for more information on the ENS.a

The data article by Wang et al. (2022) offers a subset of
the archived ENS dataset, which contains ENS GHI forecasts
over four years (2017–20) with wide geographical coverage
(i.e.,  most  of  Europe and the United States).  For each day,
ensemble  GHI  forecasts  for  hours  01:00,  02:00,  ...,  23:00,
00:00  (next  day)  from  the  00Z  run  are  used. Figure  1
presents  density  scatter  plots  of  GHI  ensemble  means
against satellite-derived GHI estimates, at the seven locations
of  interest.  In  these  plots,  brighter  colors  indicate  more
points in the neighborhood. A good alignment between the
ensemble means and observations is observable at DRA, indi-
cated by clustering around the identity line. This is because
DRA has higher clear-sky occurrences and NWP irradiance
forecasts  are  more  accurate  under  clear  skies  than  under
cloudy  conditions  (Yang  et al.,  2022a).  For  other  stations,
more  points  deviate  from the  identity  lines,  indicating  that
the  ensemble  means  could  significantly  differ  from  the
truth.  Besides,  the points of TBL exhibit  obvious asymme-
try.  Since  more  points  are  located  above  the  identity  line,
there  are  evidently  more  overestimated  ensemble  forecasts
than  underestimated  ones. Figure  2 shows  1–24-h-ahead
GHI ensembles over the first week of February 2019. It is evi-
dent  that  forecasts  are  highly  accurate  under  clear  skies,

 

Table 1. Station information and GHI statistics over hours with a zenith angle below 85° over 2017–20.

Station Latitude (°) Longitude (°) Climate Mean (W m−2) SD (W m−2) Overcast rate (%) Clear-sky rate (%) Cloudy rate (%)

BON 40.05 −88.37 Cfa 369.52 269.66 17 45 38
DRA 36.62 −116.02 BWk 505.13 290.02 3 73 24
FPK 48.31 −105.10 BSk 359.72 254.32 11 47 42

GWN 34.25 −89.88 Cfa 397.39 280.91 16 50 34
PSU 40.72 −77.93 Cfb 334.87 257.83 21 34 64
SXF 43.73 −96.62 Dfa 362.58 260.88 14 45 41
TBL 40.12 −105.24 BSk 409.41 273.35 12 46 42

Abbreviations for climate zones are: BSk: arid steppe with cold arid; BWk: arid desert with cold arid; Cfa: temperate fully humid with hot summer; Cfb:
temperate fully humid with warm summer; and Dfa: snow fully humid with hot summer. SD denotes standard deviation, while the overcast rate and clear-
sky rate correspond to the proportions of hours with clear-sky index less than 0.3 and more than 0.9, respectively (Yagli et al., 2019).

 

 

a https://confluence.ecmwf.int/display/FUG/5+Forecast+Ensemble+%28ENS%29++Rationale+and+Construction
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e.g.,  on  7  February  2019  at  DRA,  but  there  are  also  many
occasions with ensembles not covering the observations, illus-
trating the need for calibration.
 

2.3.    Data preprocessing

Since  both  the  NSRDB  and  ENS  data  do  not  contain

t

xt = (xt,1,

gaps,  no  quality  control  is  required,  except  for  some  data
transformation  and  zenith-angle  filtering.  For  time ,  in
order to remove as far as possible the “known” double-sea-
sonal  pattern  of  solar  irradiance  that  is  mainly  due  to  the
apparent movement of the sun with respect to the observer
on  Earth,  the  50-member  ENS  GHI,  denoted  as 

 

 

Fig. 1. Scatter plots of GHI ensemble means versus the satellite-derived observations over 2017–20.

 

 

Fig.  2. Visualization  of  1–24-h-ahead  GHI  ensemble  forecasts  over  the  first  week  of  February,  2019.  The  black  solid  lines
denote the satellite-derived irradiance.

 

 

b https://www.soda-pro.com/web-services/radiation/cams-mcclear

JULY 2024 SONG ET AL. 1421

 

  



xt,2, . . . , xt,50)⊤ yt

πt = (πt,1,πt,2, . . . ,πt,50)⊤

κt

πt κt

,  and  satellite-derived  NSRDB  GHI, ,  are
both divided by the clear-sky GHI, so as to obtain ensemble
clear-sky  index  forecasts, ,  and  the
clear-sky index verifications,  (Yang, 2020a, b). According
to the recommendations of Yang (2020c), the clear-sky GHI
data are obtained from the Copernicus Atmosphere Monitor-
ing Service McClear data service.b The  and  are used as
the  input  vector  and  response  variable  of  the  proposed
model,  respectively;  the dimension of each input sample is
50; but the final forecast verification is still performed in irra-
diance  terms,  by  multiplying  the  forecast  clear-sky  index
with  its  clear-sky expectation.  Instances  with  zenith  angles
larger  than  85°  are  not  considered,  since  clear-sky  indexes
in  low-sun  conditions  have  larger  percentage  uncertainty
but  are  of  little  relevance  to  solar  applications  (Yang,
2022b). The preprocessed data from 2017 to 2018 are used
as the training set, of which the final 20% of data points are
used  to  determine  the  optimal  configuration  of  the  model,
and those from 2019 to 2020 are used for true out-of-sample
testing; the training set contains 56,689 samples and the test
set contains 56,881 samples. 

3.    Methodology
 

3.1.    NCQRNN

xt

yt

qt,τ Yt τ ∈ [0,1]
P
(
yt ⩽ qt,τ|xt

)
= τ

qt,τ

Denoting  a  vector  of  predictors  with  and  the
response variable with , QR focuses on estimating the condi-
tional  quantile  of  at  some  quantile  level ,
such that .  LQR, as the most fundamental
form of QR, estimates  based on the linear model 

qt,τ = a ·xt +b , (3)

a bwhere  and  are  regression  coefficients  that  can  be  esti-
mated by minimizing the sum of quantile losses: 

argmin
a,b

N∑
t=1

ρ
(
yt, q̂t,τ

)
, (4)

q̂t,τ t
N ρ(·)

where  is  the  estimated  conditional  quantile  for  the th
sample,  is the number of samples, and  is the quantile
loss, which takes the form 

(
yt, q̂t,τ

)
=

τ (yt − q̂t,τ
)

yt ⩾ q̂t,τ

(τ−1)(yt − q̂t,τ) yt < q̂t,τ
. (5)

To allow QR-based methods to handle nonlinearity, Tay-
lor  (2000)  advocated replacing the  linear  regression with  a
neural network, and thus coined the name “quantile regression
neural  network.” Figure  3 shows  the  structure  of  a  typical
QRNN, which is no different in form from a standard multi-
layer  perceptron  network  (Huber,  1964),  in  that  it  consists
of  an  input  layer,  a  hidden  layer,  and  an  output  layer.  The

p
x = (x1, x2, . . . , xp)⊤

m
h = (h1,h2, . . . ,hm)⊤

x
q̂ = (q̂τ1 , q̂τ2 , . . . ,

q̂τl ) l

input  layer  consists  of  nodes,  which  are  used  to  receive
the input vector .  The hidden layer con-
tains  nodes, which are responsible for generating a feature
vector  that represents the useful features
extracted from . The output layer is used to map the feature
vector to the conditional quantile estimates 

 at  different quantile levels of interest. The prediction
equation of QRNN can be written as 

q̂τk = ϕ

 m∑
j=1

α jkψ

 p∑
i=1

α̃i jxi+ β̃ j

+βk

 , (6)

q̂τk

τk ψ(·) ϕ(·)
α̃i j i

j α jk

j k β̃ j βk

j k

where  is  the  conditional  quantile  estimate  of  quantile
level ,  and  are activation functions of the hidden
and output layers,  is the weight connecting the th input
node  to  the th  hidden  node,  is  the  weight  connecting
the th hidden node to the th output node,  and  and 
are  the  biases  of  the th  hidden  node  and  the th  output
node, respectively. The weights and biases of QRNN can be
determined by minimizing the quantile loss.c Quantile cross-
ing occurs very frequently because the output nodes are inde-
pendent.

To address this deficiency of the conventional QRNN,
this study proposes NCQRNN, which can solve the quantile
crossing problem in its entirety. The overarching design prin-
ciple  of  NCQRNN  is  to  add  on  top  of  the  conventional
QRNN structure another hidden layer.  The additional layer
imposes  a  non-decreasing  mapping  between  the  combined
output  from nodes  of  the  last  hidden  layer  to  the  nodes  of
the output layer, through a triangular weight matrix with posi-
tive  entries.  The  new network  structure  is  demonstrated  in
Fig. 4,  which shows without loss of generality a four-layer
NCQRNN.

h
h

f = ( f1, f2, . . . , fn)⊤ ∈ Rn×1

w = (w1,w2, . . . ,wn)⊤ ∈ Rn×1

The 1st hidden layer has the same functionality as in a
conventional QRNN, insofar as it is used to extract useful fea-
tures  from the input, and the activation function of choice
is the sigmoid function. After that,  is mapped simultane-
ously  to  a  positive  feature  vector 
and a positive weight vector  by
 

Fig. 3. A typical QRNN.
 

 

c Because quantile loss is not differentiable everywhere, the common practice is to replace it with the Huber loss (see below), such that
the conventional gradient-based parameter estimation can be inherited.
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the  added hidden layer  (the  2nd hidden layer  in  this  case),
whose  activation  function  is  the  Huber  function  (Huber,
1964), which is defined as 

φ (u) =


u2

2λ
, |u| ⩽ λ

|u| − λ
2
, |u| > λ

, (7)

λ

w
W

where  is a small positive constant, which is set to 2−8 (Can-
non,  2011; Yang  and  van  der  Meer,  2021). Figure  5 plots
this  function  for  visualization.  Then,  is  converted  to  a
matrix  by a simple transform: 

W =
(
w·1⊤

)
⊙A , (8)

1 ∈ Rl×1 ·
⊙

A ∈ Rn×l

where  is a column vector of ones, the symbol “ ” rep-
resents  matrix  multiplication,  the  symbol “ ” denotes  the
Hadamard  product  (i.e.,  element-wise  or  entry-wise  prod-
uct),  is a matrix with lower triangular elements of
zeros,  in  which  all  elements  of  the  last  column  are  1,  and
the number of 1s in the previous column is one fewer than
that in the preset column. Finally, conditional quantile esti-
mates can be obtained via 

q̂ = f⊤ ·W . (9)

n = l+1 A ∈ R(l+1)×lFor  instance,  if  one  sets ,  can  be
expressed as 

A =



1 1 1 · · · 1
1 1 1 · · · 1
0 1 1 · · · 1
0 0 1 · · · 1
...

...
...

. . .
...

0 0 0 · · · 1


, (10)

W can be expressed as 

W =



w1 w1 w1 · · · w1
w2 w2 w2 · · · w2
0 w3 w3 · · · w3
0 0 w4 · · · w4
...

...
...

. . .
...

0 0 0 · · · wn


, (11)

and the conditional quantile estimates can be obtained via 

q̂ = f⊤ ·W = ( f1, f2, f3, . . . , fn) ·

w1 w1 w1 · · · w1
w2 w2 w2 · · · w2
0 w3 w3 · · · w3
0 0 w4 · · · w4
...

...
...

. . .
...

0 0 0 · · · wn


= (q̂τ1 , q̂τ2 , q̂τ3 , . . . , q̂τl ) . (12)

q̂τ1

W n > l
n l

To make  not equal to zero, the elements of the first column
in  cannot all  be zero, which is equivalent to .  That
is,  can be set to any value larger than .

The  NCQRNN  changes  the  way  that  the  output  layer

 

 

Fig. 4. Structure of the proposed NCQRNN.

 

Fig. 5. Illustration of the Huber function.
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W

f w

f w

and  the  last  hidden  layer  in  the  QRNN  are  connected;  the
next output node connects with one more hidden node than
the previous output node. Due to the structure of , the pre-
diction of the next quantile level equals the sum of predictions
of the previous quantile level and a weighted hidden node fea-
ture.  Since  both  and  are  positive—due  to  the  use  of
Huber loss as the activation function—the output values are
monotonically increasing,  and the crossing problem is  thus
solved. Compared with previous QR methods with non-cross-
ing quantiles, NCQRNN needs no inequality constraints and
is  therefore  very  flexible.  This  new  non-crossing  quantile
design  can  be  integrated  with  many  other  network  struc-
tures,  such as an Elman neural network (ENN), a convolu-
tional  neural  network  (CNN),  a  long  short-term  memory
(LSTM) network, a stacked autoencoder, or a deep belief net-
work, by replacing the 1st hidden layer in the present network
structure  with  the  corresponding  shallow  or  deep  network
structures.  Stated  differently,  for  any  given  network  struc-
ture, as long as an additional layer in the style of  and  is
added  between  the  last  hidden  layer  and  the  output  layer,
non-crossing  quantiles  can  be  achieved.  In  what  follows,
three variants of NCQRNN are introduced. 

3.2.    Variant  1:  NCQRNN  with  the  same  features  and
weights

f w
f

In the NCQRNN described in section 3.1, both weights
and features  of  the  2nd hidden layer  need  to  be  generated.
In order to reduce the parameters of the model, the first variant
of NCQRNN only generates the features , and the  is set
to be the same as .  This approach also solves the quantile
crossing problem, and the obtained conditional quantile esti-
mations are given by 

q̂ = f⊤ ·
[(

f·1⊤
)
⊙A

]
. (13)

For  convenience,  this  variant  is  referred  to  as  NCQRNN-I
henceforth. 

3.3.    Variant 2: NCQRNN with constant weights

w h h
x w x

w w

In NCQRNN,  is obtained based on . Since  varies
with the input ,  also depends on . Similar to the motiva-
tion  behind  NCQRNN-I,  i.e.,  to  reduce  the  parameters  of
the model, it is possible to set  as a constant vector, i.e., 
is the same for all test samples after the model training. For
convenience, this variant is referred to as NCQRNN-II. 

3.4.    Variant 3: NCQRNN with only one hidden layer

w f

The  NCQRNN  shown  in Fig.  4 is  a  four-layer  model
that has two hidden layers, and the 1st hidden layer is used
to capture features of the raw input. However, even with the
1st  hidden  layer  removed,  non-crossing  QR  can  still  be
achieved.  In  this  case,  input  vectors  would  be  directly
mapped to  and . This variant is referred to as NCQRNN-III. 

4.    Case study
 

4.1.    Evaluation tools

Pinson et al. (2007) emphasized that the quality of proba-

bilistic forecasts can be divided into three properties: calibra-
tion,  sharpness,  and resolution;  this  view was reiterated by
Lauret et al. (2019), but noting that among the three proper-
ties, the calibration and sharpness are complementary and suf-
ficient  in  gauging  the  goodness  of  probabilistic  forecasts.
Whereas  calibration  focuses  on  statistical  consistency
between observations and forecasts, sharpness is concerned
with the concentrations of the probabilistic forecasts (Gneit-
ing and Katzfuss, 2014). One should note that both properties
can be analyzed quantitatively and qualitatively: quantitative
analyses would result in numerical scores, whereas qualitative
analyses employ graphical diagnostic tools to evaluate vari-
ous  properties  (Lauret  et al.,  2019; Yagli  et al.,  2020).  In
what follows, the forecast verification is achieved largely on
this basis. However, instead of following entirely the proce-
dure advocated by Lauret et al. (2019), the CORP reliability
diagram,  which  stands  for “Consistent,  Optimal,  Repro-
ducible,  and  Pool-adjacent-violators  (PAV)  algorithm,” is
additionally used, conforming to the latest advance and recom-
mendations in the field of statistics in evaluating the reliability
of probabilistic forecasts (Dimitriadis et al., 2021). 

4.1.1.    Quantitative assessment

α

The commonly used metrics of calibration and sharpness
are prediction interval coverage probability (PICP) and predic-
tion interval average width (PIAW), respectively. PICP repre-
sents the actual coverage rate of PIs with a nominal coverage
rate of , which is defined as 

PICP =

 1
N

N∑
t=1

Iαt

×100 , (14)

 

Iαt =
1,yt ∈

[
Lαt ,U

α
t
]

0,yt <
[
Lαt ,U

α
t
] , (15)

Lαt Uα
t

t
where  and  denote the lower and upper bounds of the
PI of the th sample. The PICP of calibrated predictive distri-
butions should be close to the nominal coverage rate (Lauret
et al., 2019). On the other hand, PIAW assesses the width of
PIs, which is defined as 

PIAW =
1
N

N∑
t=1

(
Uα

t −Lαt
)
. (16)

A small PIAW indicates concentrated predictive distributions
(Yang et al., 2020). The paradigm of good probabilistic fore-
casting is to maximize the sharpness while maintaining a cov-
erage  rate  close  to  the  nominal  coverage  rate  (Gneiting
et al., 2007; Yang et al., 2020). As such, the two above metrics
must be used together.

F̂t (·) yt

Aside from evaluating calibration and sharpness individu-
ally, there are also composite scores that can assess both prop-
erties simultaneously. For instance, CRPS is one of those com-
posite scores that have many amenable statistical properties;
for  a  predictive  distribution  and  a  verification ,  its
CRPS is (Hersbach, 2000) 
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CRPS =
1
N

N∑
t=1

∞∫
−∞

(
F̂t (x)−1 (x− yt)

)2
dx , (17)

1 (·)where  is the Heaviside step function. CRPS inherits the
unit of the quantity that it evaluates. On top of using CRPS
itself, Murphy (1988) suggested that skill scores should also
be  reported  when  forecast  models  are  compared.  A  skill
score represents the relative improvement in the performance
of the model of interest with respect to a reference model. Fol-
lowing that definition, the CRPS skill score (CRPSS) is 

CRPSS =
(
1− CRPSmodel

CRPSreference

)
×100 , (18)

CRPSmodel CRPSreferencewhere  and  are CRPS values of the
model of interest and the standard of reference, respectively.
Yang (2019b)  proposed  a  new  reference  model  called  the
complete-history persistence ensemble (CH-PeEn), which is
essentially a form of conditional climatology that can over-
come issues of the sample-dependence of the traditional per-
sistence ensemble. CH-PeEn is therefore used as the standard
of reference in this study, as also endorsed and recommended
by Gneiting et al. (2023), Doubleday et al., (2020), and Lauret
et al. (2019) in their seminal reviews on probabilistic forecast
benchmarking. 

4.1.2.    Qualitative assessment

Calibration  and  sharpness  can  be  visually  assessed  by
graphical  diagnostic  tools  (Lauret  et al.,  2019; Yagli  et al.,
2020). The reliability diagram and PIT histogram have hith-
erto been the two most popular calibration evaluation tools
in  the  weather  forecast  verification  community  (Lauret
et al.,  2019).  The  reliability  diagram  checks  whether
observed and forecast probabilities are close, and the PIT his-
togram verifies whether observations can be seen as random
samples of the predictive probability distributions (Gneiting
and Raftery, 2007; Pinson et al., 2010). However, both tools
require manual binning, which affects the shape of plots and
therefore the eventual judgment. For instance, Figs. 6 and 7
show the reliability diagrams and PIT histograms of calibrated
quantile  forecasts  of  the  gradient-boosted  regression  tree
(GBRT) at DRA over 2019–20 (experimental details of the
calibration  are  provided  below).  The  shape  of  the  plot
changes with the number of bins. This means that the evalua-
tion results are not only dependent on the forecasts, but are
also influenced by the parameters of evaluation tools, which
is an undesirable trait (Lauret et al., 2019).

To solve  this  problem, Dimitriadis  et al. (2021)  devel-
oped  the  CORP  reliability  diagram.  CORP  first  estimates
the conditional event probability (CEP) based on nonparamet-
ric isotonic regression and the PAV algorithm, and bins are
determined optimally and automatically. Then, it plots the esti-
mated CEP versus the forecast probability to show the reliabil-
ity.  Different  from  the  traditional  reliability  diagram,  the
CORP reliability diagram is non-decreasing—decreasing esti-
mates are counterintuitive, which are routinely viewed as arti-
facts  and  dismissed  by  practitioners  (Dimitriadis  et al.,

2021).  CORP is applicable to both continuous and discrete
forecasts, and the forecasts are reliable if the diagram aligns
well with the diagonal. The reader is referred to Dimitriadis
et al. (2021) for more technical details regarding CORP.
 

4.2.    Benchmarking models

This  study  employs  a  total  of  13  benchmark  models
with diverse predicting mechanisms to test the performance
of the proposed approach. The 13 benchmarks consist  of 1
naïve reference model, 2 parametric models, and 10 nonpara-
metric  models,  among  which  some  may  be  considered  as
state-of-the-art  models.  As  mentioned  earlier,  CH-PeEn
(Yang,  2019b)  is  to  be  used  as  the  standard  of  reference,
mainly  for  CRPSS  calculation.  The  parametric  models
include EMOS (Gneiting et al., 2005) and Gaussian-process
regression (GPR; Seeger, 2004), which both assume that the
response variable has a normal distribution. The nonparamet-
ric  models  include  analog ensemble  (AnEn; Yang,  2019c),
LQR,  QRF,  quantile-loss-based  GBRT,  QRNN,  quantile-
loss-based ENN (QRENN), quantile-loss-based one-dimen-
sional  CNN  (QRCNN),  quantile-loss-based  LSTM  (QRL-
STM), an NN-based non-crossing method Bernstein quantile
network (BQN; Bremnes, 2020) with minor adaptations by
Schulz and Lerch (2022), and the positive-increment based
non-crossing approach (QRPI). Whereas the prediction mech-
anisms  of  other  benchmarks  are  either  self-explanatory  or
acquainted, it should be just clarified that, in QRPI, the back-

 

Fig.  6. Reliability  diagrams  with  5  and  20  bins  for  post-
processed quantile forecasts of GBRT at DRA over 2019–20.
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propagation neural network outputs quantiles of the 1st quan-
tile level and positive increments of two adjacent quantile lev-
els  with  the  Huber  function,  and  then  all  quantiles  are
obtained by accumulating positive increments from quantiles
of the 1st quantile level. Since increments are positive, the pre-
dicted quantiles are monotonically increasing.

In terms of setup, CH-PeEn selects the historical clear-
sky  indexes  at  the  same  time  of  day  as  the  forecast  time
stamp (e.g.,  if  the  time of  day is “HH:00,” all  data  at  time
“HH:00” in  2017  and  2018  are  selected),  thus  forming  an
ensemble  of  the  clear-sky  index,  which  is  multiplied  with
the clear-sky expectation at the forecast hour to generate the
ensemble GHI forecasts (Yang, 2019b). AnEn compares the
ensemble  at  the  forecast  time  stamp  to  all  ensembles  over
2017–18, and the GHI observations corresponding to the M-
best ensembles are selected to form an ensemble, where M

is  set  to  be  equal  to  the  number  of  quantile  levels  used  in
other quantile-based models.

t πt

nlag

πt

nlag

For  those  benchmark  models  that  issue  quantiles,  a
total  of  199  quantile  levels  {0.005,  0.01,  …,  0.99,  0.995}
are selected to fully characterize the underlying distribution;
that  is, l = 199.  The ensemble NWP forecasts  at  each time
stamp  are  first  sorted,  because  the  perturbed  forecasts  are
exchangeable, so it is incorrect to think of forecasts with the
same member index but from different runs as those from a
typical  model  (Vannitsem  et al.,  2018; Bremnes,  2020;
Schulz and Lerch, 2022; Mayer and Yang, 2023b); this sort
of  mistake  is  commonly  committed  in  the  literature  (e.g.,
Sperati et al., 2016). Since QRCNN and QRLSTM are tempo-
ral-feature-based models, their input sample at  contains 
and  lagged  ensemble  clear-sky  index  forecasts,  while
the  input  of  other  models  is  just .  Additionally,  for
QRCNN and QRLSTM, the search range of lag  is {10,
20, 30}.

{m1, . . . ,mp}
m1 = · · · = mp = 1/p = 0.02

On parameter estimation for EMOS, since each ensemble
member represents the future GHI in an equally probable fash-
ion,  the  weights  of  its  ensemble  members
should  be  identical,  i.e.,  (Wang
et al., 2022), and the remaining model parameters, i.e., the lin-
ear coefficients adjusting the variance, are estimated via the
strategy of minimizing CRPS; all these are well known. For
QRNN,  QRENN,  QRCNN,  QRLSTM,  QRPI,  BQN,  and
NCQRNN, the models  are constructed with Keras,  and the
model parameters are optimized using the Adam optimization
algorithm  by  minimizing  the  Huber  quantile  loss  (Wang
et al., 2019): 

ρh
(
yt, q̂t,τ

)
=

τφ (
yt − q̂t,τ

)
yt ⩾ q̂t,τ

(τ−1)φ(yt − q̂t,τ) yt < q̂t,τ
. (19)

The training epoch, batch size and learning rate are set
to  1000,  3000  and  0.002,  respectively  (Zou  et al.,  2022).
The settings of most model hyperparameters are determined
based  on  using  a  grid  search. Table  2 presents  the  search
ranges of different hyperparameters. The model hyperparame-
ters of BQN are set according to Schulz and Lerch (2022),
i.e.,  BQN  consists  of  three  hidden  layers  with  neurons  of
96, 48, and 24, respectively, and the degree of the polynomials
is set to 12. The other benchmark models are implemented
in R language.
 

 

Fig. 7. Probability integral transform histograms with 5 and 20
bins  for  post-processed  quantile  forecasts  of  GBRT  at  DRA
over 2019–20.

 

Table 2. Search ranges of different hyperparameters.

Model Layer Filter/Neuron Kernel size Activation

QRNN Hidden layer 1 {10,20, … ,150} – Sigmoid
QRENN Hidden layer 1 {10,20, … ,150} – Sigmoid
QRCNN Convolutional layer 1 {8,16,32,64} {2,3,4} ReLU

Convolutional layer 2 {8,16,32,64} {2,3,4} ReLU
Convolutional layer 3 {8,16,32,64} {2,3,4} ReLU

QRLSTM LSTM {5,10,20,30} – Tanh
QRPI Hidden layer 1 {10,20, … ,150} – Sigmoid

NCQRNN Hidden layer 1 {5,10,20,30} – Sigmoid
Hidden layer 2 {200,210,220} – Huber function

1426 NCQRNN FOR NWP POST-PROCESSING VOLUME 41

 

  



4.3.    Result comparison
 

4.3.1.    Performance of the proposed model and benchmark
models

The  calibrated  probabilistic  forecasts  can  be  obtained
by  feeding  the  validation  samples  into  the  trained  models.
Tables 3 to 6 present the performance of the raw ensemble
NWP forecasts and various versions of calibrated forecasts,
based  on  the  four  aforementioned  evaluation  metrics,  at
seven stations, over two years. Consolidating the observations
made  from  those  tables,  the  following  conclusions  can  be
drawn:

(1) Post-processing can effectively improve the calibra-
tion of ensemble NWP forecasts. As shown in Table 3, the
mean PICPs at 85%, 90% and 95% nominal coverage rates
of those raw ensemble NWP forecasts are 29.91%, 33.18%
and 37.5%, respectively, which are significantly lower than
the nominal probabilities and PICPs of other models, indicat-
ing  that  the  raw  ensemble  NWP  forecasts  are  under-dis-
persed. The under-dispersion is echoed in Table 4, in which
the  PIAWs  of  raw  ensembles  at  three  nominal  coverage
rates are shown to be much lower than those of post-processed
forecasts,  revealing  that  raw  ensembles  are  overly

sharp—recall  again  that  sharpness  is  not  useful  unless  the
forecasts are calibrated.

(2)  Nonparametric  models  generally  perform  better
than parametric models, except for QRF and GBRT, which
have the worst overall performance. Although the PIAWs of
these two models at 85%, 90% and 95% nominal coverage
rates  are  lower  than  other  post-processing  models,  their
PICPs are also the lowest,  indicating insufficient coverage.
Recall that sharpness only should be appraised when reliabil-
ity is met. In terms of the comprehensive quality of probabilis-
tic  forecasts,  the  mean  CRPSSs  of  QRF  and  GBRT  are
32.75% and 32.91%, respectively, which show the slightest
improvement  among  all  the  post-processing  models.
Besides  QRF  and  GBRT,  the  mean  CRPSSs  of  GPR  and
EMOS  are  27.19%  and  32.84%,  which  are  lower  than  all
other nonparametric models. The reason can be attributed to
the fact that the distribution of clear-sky index or irradiance
is rarely normal (Yang, 2022a).d

(3)  Shallow  neural  network  models,  surprisingly,  per-
form better than those deep-learning models in terms of the
calibration  of  ensemble  NWP  forecasts.  More  specifically,
the CRPSSs of QRNN, QRENN, NCQRNN, QRCNN, and
QRLSTM  are  35.62%,  35.74%,  36.20%,  34.89%,  and

 

Table 3. PICP (%) with different nominal probabilities of raw ensembles, 12 post-processing benchmark models (section 4.2), as well as
the proposed NCQRNN (section 3.1), computed using the entire test set. Row-wise best results are in bold.

Station Raw GPR EMOS AnEn LQR QRF GBRT QRNN QRENN QRCNN QRLSTM QRPI BQN NCQRNN

PICP with 85% nominal coverage probability (%)
BON 33.38 84.08 83.46 83.54 82.71 79.13 77.27 83.42 84.23 83.30 81.51 82.60 81.97 77.58
DRA 16.30 89.29 81.98 79.66 79.36 75.22 62.87 81.24 77.10 83.45 78.01 87.66 86.08 81.15
FPK 30.71 87.41 86.14 84.04 85.02 79.45 75.36 84.33 85.66 86.30 85.44 86.64 88.95 86.70

GWN 31.03 84.97 81.44 82.74 82.70 79.00 74.29 79.60 85.91 85.38 84.27 90.13 84.95 83.39
PSU 36.23 85.59 86.05 83.60 83.91 78.74 74.97 87.02 83.31 86.80 83.07 94.03 87.71 85.51
SXF 30.71 85.10 84.68 83.37 83.69 77.47 77.36 85.78 81.71 84.35 83.41 93.65 88.02 83.90
TBL 31.00 89.34 87.20 85.49 85.21 80.76 80.57 84.58 84.34 91.01 80.70 95.68 86.86 89.18
Mean 29.91 86.54 84.42 83.21 83.23 78.54 74.67 83.71 83.18 85.80 82.34 90.06 86.36 83.92

PICP with 90% nominal coverage probability (%)
BON 36.73 88.35 87.19 88.80 87.86 84.19 84.53 88.01 89.43 88.31 87.30 89.74 87.00 84.59
DRA 18.19 91.84 85.44 85.41 85.28 80.65 72.79 84.54 85.41 88.06 84.57 95.69 92.16 87.69
FPK 34.30 92.09 89.53 88.96 90.38 84.35 83.56 89.88 90.87 90.87 90.46 91.58 93.40 91.31

GWN 34.43 88.96 85.64 88.12 87.83 84.05 82.06 89.35 90.25 90.06 88.79 93.54 88.70 89.26
PSU 40.30 90.08 89.48 89.31 88.78 84.27 83.47 92.03 88.42 91.14 88.92 97.49 92.03 90.68
SXF 34.05 89.71 88.48 88.83 88.64 82.86 84.11 89.95 89.48 90.16 89.80 97.14 91.23 89.89
TBL 34.29 92.48 90.14 90.37 90.65 85.77 85.68 89.91 89.78 94.31 87.76 97.36 94.02 92.16
Mean 33.18 90.50 87.99 88.54 88.49 83.73 82.31 89.10 89.09 90.42 88.23 94.65 91.22 89.37

PICP with 95% nominal coverage probability (%)
BON 41.45 93.02 91.13 93.85 93.75 89.94 91.66 94.99 95.01 93.74 93.34 97.15 91.24 92.38
DRA 20.48 94.56 89.00 92.24 92.04 87.47 83.56 92.60 92.23 93.22 92.19 98.36 95.90 93.06
FPK 38.24 95.68 92.99 94.24 95.21 89.57 90.96 95.48 95.76 95.65 95.54 95.42 95.98 95.88

GWN 39.00 92.77 90.01 94.04 93.33 89.40 88.25 93.43 94.38 94.61 93.98 97.89 91.55 94.63
PSU 45.47 94.48 92.95 94.60 94.24 90.10 91.97 94.91 95.39 95.84 94.55 99.37 94.98 96.19
SXF 38.69 93.84 92.49 94.21 94.72 88.95 90.31 96.45 94.73 95.35 94.99 98.60 93.28 94.17
TBL 39.18 95.74 92.89 95.04 95.14 91.06 91.47 95.48 95.26 97.17 93.89 98.94 96.46 96.74
Mean 37.50 94.30 91.64 94.03 94.06 89.50 89.74 94.76 94.68 95.08 94.07 97.96 94.2 94.72

 

 

d Alternative EMOS variants are available (Schulz et al., 2021), but would likely not change the results here, since the main adaptation
aims to allow point masks during nighttime hours, which are part of the dataset considered here.

JULY 2024 SONG ET AL. 1427

 

  



35.42%,  respectively.  Shallow  neural  network  models
(QRNN,  QRENN,  NCQRNN)  achieve  greater  promotion
than deep-learning models (QRCNN, QRLSTM) in terms of
skill score. The reason for this observation is discussed in sec-
tion 5.2.

(4) The newly proposed model has the best post-process-
ing  performance  while  avoiding  crossing.  As  shown  in
Table 6,  NCQRNN performs the best  at  all  stations except
BON. The overall  CRPSS of NCQRNN is also the highest
among  all  the  models  considered.  In  terms  of  the  crossing
problem, this study calculates the average number of cross-
ings  for  the  quantile-regression  type  of  models,  which  is

defined as 

c =
1
N

N∑
t=1

l−1∑
k=1

max
(
0,sign

(
q̂t,τk − q̂t,τk+1

))
, (20)

sign(·) c

c l−1 c = 198

c = 0

where  is the sign function, and  denotes the average
number of quantiles that are higher than the following quan-
tiles for a sample. If the quantiles of two arbitrary adjacent
quantile  levels  cross,  is  equal  to ,  that  is  in
this  study.  From Table  7,  it  is  evident  that  NCQRNN
entirely solves the crossing problem, as  at all stations.
However,  for  other  models,  except  QRPI  and  BQN,  the

 

Table 4. As in Table 3 but for PIAW (%).

Station Raw GPR EMOS AnEn LQR QRF GBRT QRNN QRENN QRCNN QRLSTM QRPI BQN NCQRNN

PIAW with 85% nominal coverage probability (%)
BON 130.34 293.09 264.21 290.15 284.55 276.08 268.84 286.34 285.34 263.19 263.92 294.59 299.75 287.73
DRA 58.73 192.37 160.45 153.05 160.51 150.59 137.07 160.61 151.76 176.72 153.64 195.83 219.01 157.65
FPK 109.99 306.30 276.81 302.19 306.34 283.20 282.46 297.01 304.03 290.78 292.83 308.76 340.49 301.90

GWN 130.16 294.35 242.16 265.95 271.88 256.47 250.34 254.04 276.87 263.04 262.86 399.04 274.40 268.69
PSU 141.91 314.67 296.04 309.44 311.79 293.30 290.85 321.24 304.17 303.87 300.48 447.93 324.11 305.51
SXF 125.51 302.85 276.98 296.83 306.48 274.69 269.75 310.12 295.57 301.51 289.92 376.26 310.97 302.70
TBL 102.72 341.53 296.56 322.17 326.86 303.05 327.81 333.85 322.60 330.79 317.01 417.57 361.99 334.97
Mean 114.19 292.17 259.03 277.11 281.20 262.48 261.02 280.46 277.19 275.70 268.67 348.57 304.39 279.88

PIAW with 90% nominal coverage probability (%)
BON 146.94 334.89 301.90 330.92 326.92 308.41 312.05 330.00 329.87 306.43 306.46 350.50 349.58 325.45
DRA 66.70 219.81 183.34 180.71 192.74 174.92 168.88 185.11 184.88 213.66 185.82 312.82 277.52 209.89
FPK 123.93 349.98 316.29 342.88 353.76 316.77 332.07 338.09 353.86 337.70 335.75 362.32 402.83 348.13

GWN 147.23 336.33 276.69 309.08 313.25 290.03 287.41 322.83 316.15 312.33 304.70 470.01 318.62 320.20
PSU 159.41 359.56 338.26 347.17 349.98 325.87 329.89 365.58 339.11 344.46 340.46 537.88 364.83 347.15
SXF 141.34 346.05 316.48 341.47 346.29 308.00 307.27 349.34 350.51 346.51 337.33 470.44 352.74 354.37
TBL 115.87 390.24 338.86 364.80 382.23 337.68 363.60 376.28 371.70 385.46 359.99 474.51 432.15 374.21

Mean 128.77 333.84 295.97 316.72 323.60 294.53 300.17 323.89 320.87 320.94 310.07 425.50 356.90 325.63

PIAW with 95% nominal coverage probability (%)
BON 168.97 399.05 359.73 385.25 387.88 351.41 370.67 394.23 394.32 376.99 371.13 447.05 410.52 393.68
DRA 77.79 261.92 218.46 239.18 251.26 214.36 215.14 242.44 245.81 269.47 245.46 444.38 352.08 263.74
FPK 143.39 417.03 376.89 402.12 424.86 359.28 417.91 416.79 429.50 411.07 411.27 429.28 481.33 412.31

GWN 169.82 400.76 329.70 375.53 380.53 337.11 333.24 380.98 385.55 381.09 381.83 575.73 373.63 397.78
PSU 183.48 428.44 403.06 404.59 409.15 367.77 383.81 419.68 409.85 404.84 397.22 697.47 411.19 414.20
SXF 163.05 412.35 377.11 402.26 407.67 353.08 356.03 420.11 406.25 409.32 401.98 572.25 400.41 402.07
TBL 133.91 465.00 403.78 428.43 446.64 381.78 419.40 447.36 450.48 460.52 433.17 549.39 519.38 447.78
Mean 148.63 397.79 352.68 376.77 386.86 337.83 356.60 388.80 388.82 387.61 377.44 530.79 421.22 390.22

 

Table 5. As in Table 3 but for CRPS (W m−2).

Station Raw GPR EMOS AnEn LQR QRF GBRT QRNN QRENN QRCNN QRLSTM QRPI BQN NCQRNN

CRPS (W m−2)
BON 58.88 58.97 54.25 52.01 52.69 54.31 54.30 52.16 51.71 53.03 52.30 52.35 54.10 52.02
DRA 40.69 34.58 31.06 29.24 30.62 30.74 30.71 29.31 30.04 30.38 29.95 30.75 33.58 29.23
FPK 56.48 55.31 50.90 49.05 50.15 51.89 52.30 48.86 49.21 48.72 49.14 50.18 51.16 48.51

GWN 58.70 58.65 53.34 50.85 52.54 53.27 55.69 51.64 51.09 52.06 50.87 63.96 53.49 50.73
PSU 61.43 59.95 56.86 54.45 55.90 56.96 55.47 54.91 54.42 55.64 54.75 72.06 56.56 54.25
SXF 60.61 59.77 55.38 53.49 53.78 55.68 54.39 53.02 52.97 53.79 53.36 55.10 54.02 52.98
TBL 63.33 61.81 57.78 54.71 55.61 57.38 56.49 55.27 54.32 55.01 55.29 55.94 58.62 54.12
Mean 57.16 55.58 51.37 49.11 50.18 51.46 51.34 49.31 49.11 49.80 49.38 54.33 51.65 48.83
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mean  crossing  numbers  are  between  30  and  69,  showing
that  the  crossing  problem  happens  with  a  probability  of
15.15%–34.85%.  In  addition,  since  only  quantile  crossing
of two adjacent quantile levels is considered here, the actual
number  of  crossings  will  be  larger.  Although  QRPI  and

BQN  are  also  free  of  crossing,  they  perform  significantly
worse than NCQRNN in terms of CRPS and CRPSS.

(5)  Calibrated  forecasts  under  cloudy-sky  conditions
are more reliable. Figure 8 shows the CORP reliability dia-
grams of  raw and  post-processed  forecasts  issued  by  some

 

Table 6. As in Table 3 but for CRPSS (%).

Station Raw GPR EMOS AnEn LQR QRF GBRT QRNN QRENN QRCNN QRLSTM QRPI BQN NCQRNN

CRPSS (%)
BON 32.13 32.03 37.47 40.05 39.27 37.40 37.41 39.88 40.40 38.88 39.72 39.66 37.64 40.04
DRA 9.78 23.33 31.13 35.17 32.11 31.84 31.91 35.01 33.39 32.64 33.59 31.82 25.54 35.19
FPK 19.78 21.45 27.71 30.34 28.77 26.30 25.72 30.61 30.11 30.81 30.21 28.73 27.34 31.10

GWN 33.96 34.01 39.99 42.79 40.89 40.07 37.34 41.90 42.52 41.43 42.77 28.04 39.82 42.92
PSU 32.27 33.90 37.31 39.97 38.37 37.20 38.84 39.46 40.00 38.65 39.64 20.55 37.64 40.19
SXF 24.61 25.66 31.12 33.47 33.11 30.75 32.35 34.05 34.12 33.10 33.63 31.47 32.81 34.10
TBL 17.96 19.92 25.15 29.12 27.96 25.66 26.82 28.40 29.63 28.73 28.37 27.53 24.06 29.89
Mean 24.36 27.19 32.84 35.84 34.35 32.75 32.91 35.62 35.74 34.89 35.42 29.69 32.12 36.20

 

Table 7. Average number of quantile crossings for different QR methods over 2019–20. Quantile crossing instances are counted for each
forecast  time stamp, and then averaged. Since there are 199 quantiles,  the number 30 means that the crossing problem happens with a
probability of 30 / 198 = 15.15%. Row-wise best results are in bold.

Station LQR QRNN QRENN QRCNN QRLSTM QRPI BQN NCQRNN

Average number of quantile crossings
BON 30 63 70 62 35 0 0 0
DRA 29 71 74 65 50 0 0 0
FPK 29 59 66 59 37 0 0 0

GWN 31 68 71 66 49 0 0 0
PSU 31 61 70 57 37 0 0 0
SXF 29 63 68 66 41 0 0 0
TBL 31 60 63 49 39 0 0 0
Mean 30 64 69 61 41 0 0 0

 

 

Fig. 8. CORP reliability diagrams of selected post-processed forecasts over 2019 to 2020.
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selected  models.  (Only  eight  sets  of  forecasts  are  selected
because the colorblind palette only has eight colors, beyond
which the diagrams may become illegible.) The diagrams of
NCQRNN are closer to the diagonals than those of other mod-
els in most cases, which indicates that the forecasts of the pro-
posed model are more reliable. To investigate the post-pro-
cessing performance under different sky conditions, the test-
ing samples from all stations are divided into overcast, clear-
sky, and cloudy-sky conditions, and then the CORP diagrams
of calibrated forecasts  are plotted for  each of the three sky
conditions, respectively. According to Fig. 9, it can be seen
that the diagrams of calibrated forecasts for cloudy-sky condi-
tions are closer to the diagonal compared to those of clear-
sky and overcast conditions. Therefore, it can be concluded
that post-processed forecasts of cloudy weather are more reli-
able.

(6)  The  predictive  performance  of  various  calibration
methods is consistent across stations, and is generally inde-
pendent  of  the  irradiance  regimes  at  different  stations.
Figure 10 shows CRPSSs of different models at different sta-
tions. The seven stations can be divided into three categories
based on the overall  CRPSSs:  stations with large improve-
ment  (BON,  GWN,  PSU),  stations  with  medium  improve-
ment  (DRA,  SXF),  and  stations  with  small  improvement

(TBL, FPK). According to Yang (2022a), there are substantial
differences  in  the  predictability  of  solar  irradiance  across
SURFRAD stations, which determines how much improve-
ment one can potentially achieve through calibration. How-
ever, independent of predictability, the performance ranking
of  various  models  at  each  station  is  quite  consistent,  as
shown by the shapes of the histograms.

Figure 11 shows the PIs of the proposed model at nominal
coverage rates of 85%, 90%, and 95%. Most of the observa-
tions  fall  within  the  PIs,  and  PIs  could  effectively  respond
to the observations, showing good resolution—recall that reso-
lution generally suggests the ability to issue different forecasts
for different forecasting situations. Compared to Fig. 2, the
under-dispersion problems of raw ensembles are solved. 

4.3.2.    Forecast performance of the non-crossing models

Three  variants  of  NCQRNN—namely,  NCQRNN-I,
NCQRNN-II,  and  NCQRNN-III—are  proposed  in  sections
3.2 to 3.4. Figure 12 presents the CRPSSs of NCQRNN and
its  three  variants.  It  can  be  seen  that  the  performance  of
NCQRNN-I is close to, but still not as good as, NCQRNN.
NCQRNN-III ranks next to NCQRNN-I, indicating that the
1st hidden layer can help improve the forecast performance.
This confirms that the 1st hidden layer can capture important
features  of  the  input,  which  helps  generate  better  weights

 

 

Fig.  9. CORP reliability  diagrams  of  post-processed  forecasts  under  three  sky  conditions  from all  stations
over 2019−20.

 

 

Fig. 10. CRPSSs of various post-processing models over 2019–20. Brighter colors indicate higher values.
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and  input  features  for  subsequent  layers  of  the  network.
NCQRNN-II performs worst, showing that it is not beneficial
to use the same weights for all samples. Due to the changing
irradiance regimes, ensemble NWP forecasts made for these
regimes also have different characteristics, and thus the cali-
bration weights should respond to those accordingly. 

5.    Discussion

As shown in Fig. 11, the RMSEs of the means of cali-
brated  quantile  forecasts  are  close  to  those  of  ensemble

NWP forecasts at most stations, indicating that the calibration
is achieved mainly by improving the dispersion of raw ensem-
bles, whereas the conditional bias in forecasts is not deliber-
ately attended to. It should be highlighted that this “deficien-
cy” is not specific to the present models,  but is general for
all  quantile-based models—QR minimizes  the  pinball  loss,
which is unrelated to the bias in mean of predictive distribu-
tion.  This  property  has  been  widely  reported  in  the  litera-
ture, and various procedures have been proposed to enhance
QR with bias correction ability (e.g., Wei and Carroll, 2009;
Guo  et al.,  2021).  However,  motivated  by  the  scatter  plots

 

 

Fig.  11. Several  (50%,  90%,  and  95%)  central  PIs  of  the  proposed  NCQRNN,  at  seven  stations,  over  the  first  300  hours  in
January  2019.  The  RMSEs  for  the  means  of  post-processed  forecasts  and  ensemble  NWP  forecasts  are,  however,  calculated
based on the entire test set.

 

 

Fig. 12. CRPSSs of NCQRNN and its three variants over 2019–20. Brighter colors indicate higher values.
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shown in Fig.  13,  applying simple linear corrections to the
mean values of predictive distributions seems sufficient.

Indeed, Fig. 13 shows the scatter plots of the means of
quantile forecasts of all models versus satellite-derived GHI
on test sets at station SXF, with brighter colors suggesting a
higher  concentration  of  data  points  in  the  neighborhood.  It
can be seen that the means of calibrated forecasts exhibit simi-
lar error behaviors, insofar as the models tend to overestimate
when observations are low and underestimate when observa-
tions  are  high,  which  could  be  largely  attributable  to  the
misidentification of  sky conditions.  This  phenomenon sug-
gests  that  the  P2P  calibration  of  ensemble  NWP  forecasts
does not eliminate conditional forecast biases, which certainly
affects the forecasting performance. In this regard, the ques-
tion of whether removing biases prior to calibration must be
addressed.  This  section  first  tries  to  reduce  the  conditional
forecast biases from two aspects: historical observations and
historical  raw  ensembles.  After  that,  in  order  to  verify
whether fewer ensemble members reduce the forecast perfor-
mance while reducing the computational cost, the forecasts
with different input dimensions are discussed.
 

5.1.    Reducing  conditional  bias  by  using  historical
observations

xt

This study considers four methods that leverage histori-
cal  observations  to  improve  the  calibration  performance.
The first method corrects  based on the observation of the
previous forecast instance, which is expressed as follows: 

x′t = yt−1− x̄t +xt , (21)

x′t
t x̄t xt

where  denotes the corrected ensemble NWP forecasts at
,  and  is  the  mean  value  of .  This  method  is  used  to

move the centers of the input ensembles around observations
for  cases  like  the  290th  to  the  300th  test  hour  for  BON in
Fig. 11. Although the observations of the previous hours are
not  available  because  the  raw  ensembles  on  each  day  are
issued  at  0000  UTC,  this  method  allows  one  to  study  the
effect of a somewhat “ideal” bias-removal scenario.

xtThe second method corrects  based on those observa-

tions  with  similar  zenith  angles  to  the  one  at  the  forecast
time stamp but from the previous day; that is: 

x′t = ȳZ,t − x̄t +xt , (22)

ȳZ,t yZ,twhere  is the mean value of , which denotes a set of
observations from the previous day with zenith angle differ-
ences of ±2.5° with respect to the zenith angle at the forecast
time stamp (Yang and Gueymard, 2021).

xt

The  superior  performance  of  AnEn  has  been  proven
many  times  (Yang,  2017; Yang  et al.,  2022b),  and  it  also
achieves  competitive  scores  in  section  4.3.1.  The  third
method therefore corrects  based on the mean of matched
historical observations of AnEn; that is: 

x′t = ȳAnEn,t − x̄t +xt , (23)

yAnEn,t

t ȳAnEn,t

yAnEn,t

where  represents matched historical  observations of
AnEn for the forecast for time , and  is the mean of

.
x′t = yAnEn,tFor  the  fourth  method,  we  simply  let ,

which implies that post-processed forecasts from AnEn are
post-processed again with NCQRNN. Some may argue the
need  to  perform  post-processing  twice.  However,  as  evi-
denced by many previous works on irradiance post-process-
ing,  the  forecasts  from  AnEn  are  often  under-dispersed
(Yang  et al.,  2020, 2022c).  Therefore,  recalibrating  AnEn-
based forecasts is commonplace (Gneiting et al., 2023).

x′t
xt

Next, the various versions of  obtained from the correc-
tions  are  used  as  the  input  instead  of  to  train  and  test
NCQRNN.  For  convenience,  the  trained  models  based  on
the  four  methods  are  referred  to  as  NCQRNN-MI,
NCQRNN-MII,  NCQRNN-MIII,  and  NCQRNN-MIV.
Table 8 shows the CRPSSs of these models on the test sets,
and Table 9 summarizes the RMSEs of the means of quantile
forecasts. Firstly, it can be concluded that NCQRNN-MI per-
forms  much  better  than  NCQRNN  in  terms  of  CRPSS,
which indicates that the conditional biases of the raw ensem-
ble  limit  the  post-processing  performance.  In  addition,  the
means  of  quantile  forecasts  of  NCQRNN-MI  are  much

 

 

Fig.  13. Scatter  plots  of  the  means  of  post-processed  quantile  forecasts  versus  satellite-derived  irradiance  observations  at  an
arbitrarily selected station (SXF) over 2019–20.
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more  accurate  than  those  of  NCQRNN.  Secondly,
NCQRNN-MII performs the worst, probably because the irra-
diance regime of the previous day has little advisory effect
on  the  current  day’s  irradiance  regime.  Finally,  both
NCQRNN-MIII and NCQRNN-MIV attain better probabilis-
tic  performance  than  NCQRNN  at  some,  but  not  all,  sta-
tions.  For  instance,  NCQRNN-MIV performs well  at  BON
and  PSU.  It  is  noteworthy  that  AnEn  also  has  the  highest
CRPSSs at  these  two sites.  This  shows that  using matched
observations as the input instead of raw ensembles can further
improve  the  performance  at  stations  with  high  AnEn
CRPSSs. Besides, NCQRNN-MIV also achieves more accu-
rate means of quantile forecasts at most sites.
 

5.2.    Reducing  conditional  bias  by  using  historical  raw
ensembles

nlag

{x̄t, x̄t−1, . . . , x̄t−nlag } yt
ŷt xt

The correction methods based on historical raw ensem-
bles  first  learn  the  relationship  between  lagged  raw
ensemble  means  and ,  and  generate  a
deterministic forecast  to correct : 

x′t = ŷt − yt +xt . (24)

x′t

ENN and LSTM are selected to learn the aforementioned
relationship. This is because ENN is an outstanding shallow
neural network, whereas LSTM is a deep-learning-based tem-
poral model, both of which perform best among the bench-
mark  models.  The  corrected  ensemble  from  ENN  and
LSTM are used to train NCQRNN, and the trained models
are referred to as NCQRNN-RI and NCQRNN-RII.

κt

{π̄t, π̄t−1, . . . , π̄t−nlag }

Table 10 shows the CRPSSs of these models on the test
sets, and Table 11 summarizes the RMSEs of the means of
quantile  forecasts.  It  can  be  concluded  that  the  corrected
inputs  do  not  improve the  forecast  performance. Figure  14
presents the correlation coefficients between  and the ensem-
ble  clear-sky  index  forecast  means 
based  on  the  maximum  information  coefficient  (MIC),
which  can  measure  both  linear  and  nonlinear  relationships
of  two  variables  (Reshef  et al.,  2011).  The  MICs  decrease
with  increasing  lag  and  saturate  quite  fast.  The  MICs  are
low even  for  small  lags,  showing  that  the  observations  are
weakly  related  to  the  historical  raw  ensembles.  This  also
explains  why  the  deep-learning-based  models  perform
poorly in section 4.3.

Sections 5.1 and 5.2 reveal that no significant improve-
ment in accuracy can be achieved by combining the proposed
NCQRNN model with post-processing methods that can be
applied in practice. (The exception is NCQRNN-MI, which
is an oracle model,  i.e.,  there is no way to obtain the next-
day observations in advance, so the model is only used for
analysis  purposes.)  This indicates that  the remaining errors
in the forecasts are supposedly not due to the limited perfor-
mance of NCQRNN, but the limited predictive power of the
available  inputs  on  the  remaining  errors.  In  other  words,
with  any  further  combinations,  the  proposed  model  is  not
only  effective  in  calibrating  the  reliability  of  the  ensemble
forecasts, but also eliminates the bias and reduces the forecast
errors to an extent that can be expected from state-of-the-art
models.
 

 

Table 8. CRPSSs of four historical-observation-based models and the proposed model over 2019–20. Row-wise best results are in bold.

Station NCQRNN NCQRNN-MI NCQRNN-MII NCQRNN-MIII NCQRNN-MIV

CRPSS (%)
BON 40.04 48.87 30.37 40.44 40.15
DRA 35.19 36.65 27.32 34.66 34.83
FPK 31.10 41.39 22.88 30.14 30.89

GWN 42.92 52.22 32.29 43.10 42.82
PSU 40.19 46.25 26.43 39.98 40.24
SXF 34.10 44.38 26.14 33.59 33.98
TBL 29.89 36.03 20.72 29.50 29.74
Mean 36.20 43.68 26.59 35.92 36.09

 

Table 9. RMSE of the means of quantile forecasts for four historical-observation-based models and the proposed model over 2019–20.
Row-wise best results are in bold.

Station NCQRNN NCQRNN-MI NCQRNN-MII NCQRNN-MIII NCQRNN-MIV

RMSE (W m−2)
BON 114.76   95.89 128.75 114.11 113.96
DRA   77.65   71.98   86.59   77.83   77.81
FPK 107.16   87.68 116.92 107.66 107.44

GWN 118.50   96.13 132.22 117.66 118.10
PSU 116.78 103.38 137.49 117.12 116.48
SXF 119.57   97.45 129.77 119.92 119.39
TBL 121.72 107.35 134.30 121.43 121.50
Mean 110.88   94.27 123.72 110.82 110.67
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5.3.    Dimension of the input sample

xt x̃(1)
t

For the same model, using all ensemble members as the
input implies the largest number of modeling parameters, lead-
ing to  the highest  computational  cost. Bremnes (2019)  and
Rasp and Lerch (2018) thus advocated using fewer members
or other summary statistics to reduce the computational bur-
den. To investigate the effect of the input dimension on the
forecast  performance,  this  section  employs  three  reduced
input  sets  instead  of .  The  first  input  set  consists  of

xt

xt

x̃(2)
t

xt

xt

x̃(3)
t

xt

xt

x̃(1)
t x̃(2)

t

x̃(3)
t

quantiles of  at levels {0.025,0.2, 0.4, 0.6, 0.8, 0.975}, as
well  as  the  minimum  and  maximum  values  of ,  making
eight members in total. The second input set  consists of
quantiles of  at levels {0.025, 0.1, 0.2, 0.3, ..., 0.9, 0.975},
as well as the minimum and maximum values of , making
13 members in total. The third input set  consists of quan-
tiles of  at levels {0.025, 0.05, 0.1, 0.15, ..., 0.95, 0.975},
as well as the minimum and maximum values of , making
23 members in total. The NCQRNN trained using , 
and  is  referred to  as  NCQRNN-EI,  NCQRNN-EII  and
NCQRNN-EIII, respectively.

Table  12 summarizes  the  CRPSSs  of  NCQRNN  with
complete  and  reduced  input  sets.  It  can  be  found  that
although smaller input dimensions lead to better forecasts at
BON, for most of the other stations, using higher input dimen-
sion achieves better performance. This may be because reduc-
ing  the  input  dimension  can  cause  information  loss.  As
such,  as  far  as  irradiance  is  concerned,  it  is  advised  to  use
all member forecasts during calibration.

In addition, Demaeyer et al. (2023) and Rasp and Lerch
(2018) showed that adding other meteorological variables to
predictors may further improve the performance. This exten-
sion is no problem for the proposed model, due to the flexibil-
ity of neural networks, but is difficult for EMOS (Rasp and
Lerch, 2018). Since extending the proposed model is not the
focus of this study, it is not discussed in depth.
 

6.    Conclusion

This paper deals with calibrating ensemble NWP fore-
casts,  which  are  often  found  to  be  under-dispersed,  due  to
the  imperfect  uncertainty  handling  during  weather  model-
ing. QR is a highly competitive calibration tool in terms of
both  flexibility  and  predictive  performance.  However,  the
interpretability of QR-based predictions is often hindered by
the  problem known as “quantile  crossing.” To address  this
limitation of existing QR techniques, this study proposes an
NCQRNN, which can issue reliable quantile forecasts without
crossing. The underlying mechanism to prevent quantile cross-
ing  is  elegant,  and  it  is  not  limited  by  network  structure;

 

Table  10. CRPSSs  of  two  historical-raw-ensemble-based  models
and the proposed model over 2019–20. Row-wise best results are
in bold.

Station NCQRNN NCQRNN-RI NCQRNN-RII

CRPSS (%)
BON 40.04 40.02 40.32
DRA 35.19 32.71 31.11
FPK 31.10 28.97 30.54

GWN 42.92 41.87 43.04
PSU 40.19 39.72 39.35
SXF 34.10 33.71 33.97
TBL 29.89 28.60 29.94
Mean 36.20 35.09 35.47

 

Table  11. RMSE  of  the  means  of  quantile  forecasts  for  two
historical-raw-ensemble-based  models  and  the  proposed  model
over 2019–20. Row-wise best results are in bold.

Station NCQRNN NCQRNN-RI NCQRNN-RII

RMSE (W m−2)
BON 114.76 114.86 114.68
DRA   77.65   78.85   78.73
FPK 107.16 108.23 107.8  

GWN 118.5   119.12 118.23
PSU 116.78 116.81 117.91
SXF 119.57 119.74 119.45
TBL 121.72 123.04 121.83
Mean 110.88 111.52 111.23

 

Fig.  14. MICs  between  clear-sky  index  observations  and
ensemble clear-sky index forecast means with different lags at
seven stations over 2019–20.

 

Table 12. CRPSSs of the proposed model with raw ensembles and
three types of input samples over 2019–20. Row-wise best results
are in bold.

Station NCQRNN
NCQRNN-

EI
NCQRNN-

EII
NCQRNN-

EIII

CRPSS (%)
BON 40.04 40.08 40.08 40.25
DRA 35.19 34.70 35.08 34.94
FPK 31.10 30.72 30.73 30.93

GWN 42.92 42.57 42.69 42.87
PSU 40.19 39.76 39.58 40.07
SXF 34.10 34.09 33.99 34.17
TBL 29.89 29.47 29.59 29.74
Mean 36.20 35.91 35.96 36.14
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unlike  most  former  non-crossing  remedies,  the  strategy  of
adding  a  positive  triangular  matrix  before  the  output  layer
may be easily applied to many shallow- and deep-learning-
based neural networks.

The empirical part of the work considers a solar irradi-
ance case study, and a formal forecast verification procedure
is employed to evaluate the goodness of the post-processed
forecasts.  Based  on  extensive  experiments,  this  study  pro-
vides some valuable insights on the calibration of ensemble
irradiance  forecasts,  which  are  summarized  as  follows:  (1)
NCQRNN  has  the  best  post-processing  performance  while
completely eliminating quantile crossing; (2) nonparametric
models generally perform better than parametric models for
calibration  of  ensemble  irradiance  forecasts;  (3)  shallow
machine-learning models perform better than deep-learning
models for calibration of ensemble irradiance forecasts; (4)
calibrated irradiance forecasts for cloudy skies are more reli-
able; (5) the goodness of various calibration methods is con-
sistent across stations, and is generally independent of the irra-
diance  regimes  at  different  stations;  (6)  P2P  calibration  of
ensemble irradiance forecasts does not significantly eliminate
conditional forecast biases, which limits the further promo-
tion  of  performance;  (7)  using  matched  observations  of
AnEN as the input instead of raw ensembles can marginally
improve the performance at locations where AnEn performs
well; and (8) reducing the input dimension is not advised, as
it  may  reduce  the  forecast  performance.  Despite  the  case
study being wholly focused on irradiance,  the method pro-
posed is in fact general. Therefore, a straightforward future
direction  is  to  test  NCQRNN  on  other  weather  variables,
which may lead to the same or different conclusions as the
present ones. In addition, the proposed model is tested for dif-
ferent climates, but the spatial distribution of calibration per-
formance should be further investigated in the future.
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