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ABSTRACT

Understanding the characteristics and variations of heat  exchange and evaporation of lakes is  important  for regional
water resource management and sustainable development. Based on eddy covariance measurements over Lake Vanajavesi
in  southern  Finland,  characteristics  of  energy  fluxes  and  cold  frontal  effects  on  energy  exchange  were  investigated.  The
lake acted as a heat sink in spring and summer and a heat source in winter. The latent heat flux reached its minimum value
in the morning and peaked in the afternoon. The diurnal variation of sensible heat flux was opposite to that of latent heat
flux. Impact factors for the sensible heat flux were mainly the lake-air temperature difference and the product of lake-air
temperature  difference  and  wind  speed.  The  latent  heat  flux  was  mainly  affected  by  the  vapor  pressure  deficit  and  the
product of vapor pressure deficit and wind speed. The annual mean values of bulk transfer coefficients for momentum, heat,
and water vapor were 1.98 × 10–3, 1.62 × 10–3, and 1.31 × 10–3, respectively. Bulk transfer coefficients for heat and water
vapor were not equal, indicating that the parameterization of energy exchange in numerical models, where the assumption
that  the  heat  coefficient  equals  the  water  vapor  coefficient  needs  improvement.  During  the  ice-free  season,  cold  fronts
resulted in 28 sensible heat pulses and 17 latent heat pulses, contributing to 50.59% and 34.89% of sensible and latent heat
exchange  in  Lake  Vanajavesi.  These  results  indicate  that  cold  fronts  significantly  impact  the  surface  energy  budget  and
evaporation over lakes.
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Article Highlights:

•  The studied lake can regulate regional energy exchange on both daily and seasonal scales.
•   Bulk  transfer  coefficients  for  heat  and  water  vapor  were  not  equal,  indicating  that  the  parameterization  of  energy
exchange in numerical models, where the assumption that the heat coefficient is equal to the water vapor coefficient needs
to be improved.
•  Cold fronts can significantly promote sensible and latent heat exchange over lakes.

 

 
 

 

1.    Introduction

There are more than 117 million lakes worldwide, cover-
ing approximately 3.7% of the Earth’s non-glaciated land sur-
face  (Verpoorter  et al.,  2014).  Lakes  provide  key  energy,
water,  ecosystem,  and  ecological  services  for  catchment

areas (Biermann et al.,  2014; Santanello et al.,  2018; Wang
et al.,  2018)  and are  sensitive  to  global  warming,  acting as
sentinels  of  climate  change  (Adrian  et al.,  2009; Woolway
and Merchant, 2019). Due to global warming, lakes exhibit
changes  in  surface  water  temperature,  evaporation,  mixing
regimes, ice cover, and so on (O’Reilly et al., 2015; Rodell
et al., 2018; Woolway et al., 2019). Such variations interact
with one another, complicating the mechanism of the lake’s
physical response to climate change (Woolway et al., 2020).
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However,  the  lack  of  long-term  measurements  over  lakes
leads  to  less  detailed  information  on  atmospheric  energy
exchanges  and  associated  hydrological  cycles  (Huotari
et al., 2011; Feng et al., 2016). Investigating lake–atmosphere
interactive processes will improve the understanding of lake
responses to global climatic variations (Huziy and Sushama,
2017; Meng et al., 2023).

Due to their large heat capacity and low surface albedo
and roughness, lakes act differently from other land surfaces
in the exchange of regional momentum, heat, and mass. (Xu
et al.,  2016; Sugita,  2020). Compared to soil  and vegetated
surfaces,  the  surface  albedo  of  lakes  is  low  (Xiao  and
Bowker,  2020; Yan et al.,  2021; Du et al.,  2023).  The lack
of  reflectance  leads  to  a  large  part  of  solar  radiation  being
absorbed  by  the  water  surface  and  deeper  layers  (Subin
et al., 2012). Due to the large heat capacity of water, the tem-
perature of water increases more slowly than the temperature
of  the  atmosphere  (Fink et al.,  2014).  Further,  the  time lag
of  lake-temperature  warming  in  spring  is  longer  for  deep
water than for shallow water (Calamita et al., 2021). In late
spring and summer,  the  lake  is  cooler  than the  atmosphere
and  surrounding  land  surfaces,  thereby  functioning  as  an
energy sink (Spence et al., 2003). Beginning in late autumn
and lasting through winter, the solar radiation is low; conse-
quently, the water surface temperature becomes higher than
the  air  temperature,  allowing  the  lakes  to  transition  to  an
energy  source  (Gianniou  and  Antonopoulos,  2007; Sun
et al., 2020). This attribute of lakes brings significant thermal
lag to the regional climate (Lei et al., 2021). In summer and
autumn,  large  temperature  and  vapor  pressure  gradients
between  the  lake  surface  and  the  overlying  atmosphere
favor energy flux exchanges (Zhang et al., 2023). The latent
heat  flux  is  determined  by  vapor  pressure  differences
between the lake and atmosphere interface, and the sensible
heat flux (H)  is  dependent upon the temperature difference
between  the  water  surface  and  the  air  above  (Liu  et al.,
2012; Li  et al.,  2015).  These  turbulent  fluxes  are  also
affected  by  the  wind  speed  and  turbulent  mixing  intensity
(Liu  et al.,  2015; Sugita  et al.,  2020).  The  evaporation  of
small lakes is smaller than that of large lakes, and their sensi-
ble heat flux is about twice that of large lakes (Rouse et al.,
2008).  Whether  these physical  processes  of  large and deep
lakes, which control momentum, heat, and water exchanges
between the lake and the atmosphere, apply to small and shal-
low lakes remains unclear (Bryan et al.,  2015; Wang et al.,
2019; Notaro et al., 2022).

Lake–atmosphere  interactions  are  also  influenced  by
large-scale  synoptic  processes  (Gerken  et al.,  2013; Huang
and Li, 2017; Du et al., 2018a; Arrillaga et al., 2019). Passage
of large-scale synoptic processes may cause changes in tem-
perature, wind, and humidity in the catchment area, altering
the stability of the atmospheric boundary layer and the devel-
opment  of  convection,  significantly  impacting  the  regional
energy and water cycle (Gerken et al., 2014; Arrillaga et al.,
2016; Yusup and Liu, 2020). The differences in the thermal
and dynamic properties between lakes and land can stimulate
deep convective activity and increase local precipitation (Stur-

man et al.,  2003; Wen et al.,  2015). Xu et al.  (2019)  found
that the warm and humid flow brought by the monsoon can
reduce  the  temperature  and  humidity  differences  between
the  lake  and  the  atmosphere  and  suppress  the  exchange  of
matter and energy at the lake surface in Erhai Lake, southwest
China.

Cold frontal activities play a significant role in regulating
the exchange of surface heat fluxes and the water cycle (Liu
et al.,  2011; Roberts  et al.,  2015; Van  Den  Broeke,  2022).
The invasion of dry and cold flow above warm and humid
lake areas can increase wind speed, temperature, and humidity
gradients between the lake and the atmosphere, enhancing tur-
bulent  mixing  (Matias  et al.,  2021).  In  central  Mississippi,
cold fronts can increase the sensible and latent heat flux trans-
port  by  77%  and  16%,  respectively,  resulting  in  a  167%
increase in lake heat loss (Curtarelli et al., 2013). Under mod-
erately unstable and stable conditions, the enhanced mechani-
cal  mixing  promotes  sensible  and  latent  heat  exchanges
with  increased  wind  speed  (Yusup  and  Liu,  2020).  Unlike
the  noted  cooling  effects  when  cold  fronts  pass  by  inland
lakes, more than half of cold frontal passages in coastal sites
present  a  warming effect  and decreased relative humidities
in the post-frontal sector (Van Den Broeke , 2022). The pas-
sage  of  cold  fronts  can  also  affect  the  local  water  cycle
(Huang  and  Li,  2019; Zhang  et al.,  2022).  As  cold  fronts
approach,  local  water  levels  in  the  Wax  Lake  Delta,
Louisiana,  USA,  could  be  elevated  by  even  one  meter
(Roberts et al., 2015). These effects demonstrate the need to
carefully consider the characteristics of lake–atmosphere inter-
actions during cold frontal passage (Gallus and Segal, 1999;
Curtarelli et al., 2013; Huang and Li, 2017).

The highest concentration, perimeter, and area of lakes
appear  at  boreal  and  arctic  latitudes  (Pekel  et al.,  2016).
High-latitude lakes are warming faster than the global aver-
age, which may have profound implications for the catchment
area  (Pilla  et al.,  2020; Noori  et al.,  2022).  As  few  boreal
lakes have detailed observations of long-term energy fluxes,
the understanding of lake–atmosphere interactions and their
response to cold fronts is limited (Spence et al., 2003; Huotari
et al.,  2013; Mammarella  et al.,  2015; Stepanenko  et al.,
2016). From January 2016 to January 2017, an eddy covari-
ance measurement  was  conducted over  Lake Vanajavesi,  a
boreal lake in southern Finland. Half-hourly data on tempera-
ture,  wind,  radiation,  and energy fluxes were collected and
analyzed.  In  this  study,  the  main  aims  are  (1)  to  provide
detailed information on lake–atmosphere interactions, (2) to
investigate the impact factors of turbulence fluxes, (3) to char-
acterize  variations  of  bulk  transfer  parameters,  and  (4)  to
demonstrate  the  significance  of  cold  fronts  in  lake–atmo-
sphere  interactions.  The  results  will  benefit  water  resource
management in lake catchment areas and assist in more accu-
rate  parameterizations  of  lake–atmosphere  interactions  in
numerical weather models.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the data and methods used in this study. Sec-
tion 3 presents and discusses the results; finally, section 4 pro-
vides a summary and conclusion. 
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2.    Data and methods
 

2.1.    Site description and measurements

Lake  Vanajavesi  (61°4'–61°19'N,  23°45'–24°24'E)  is
located in the provinces of Pirkanmaa and Kanta-Häme, south-
ern  Finland  (Partanen  and  Hellsten,  2005; Yang  et al.,
2012).  The  average  (maximum)  depth  of  the  lake  is  8  m
(23.89  m).  Its  average  altitude  is  79.40  m above  sea  level.
The area of Lake Vanajavesi is about 119 km2. The measure-
ment  site  is  located on the tip  of  a  narrow peninsula along
the eastern shore of the lake (Fig. 1c, 61°8'N, 24°15'E). The
lake depth nearby is 5 m. A fixed platform has been estab-
lished here since November 2015. Continuous measurements
of meteorological variables, radiation components, and turbu-
lent exchanges of momentum, heat, and CO2 were conducted
at this location from Jan. 2016 to Jan. 2017.

Air  temperature  and  relative  humidity  were  measured
by a Rotronic MP102H sensor (Rotronic Instrument Corp.,
NY, USA) at a height of 2.5 m over the platform. The short-
wave  and  longwave  radiation  components  were  also  mea-
sured  at  a  height  of  2.5  m  with  a  net  radiometer  (CNR1,
Kipp & Zonen, Netherlands). All atmospheric measurements
were calculated using 30-min averages for the analyses.

τ

Turbulent  exchange  of  momentum,  heat,  and  mass
(H2O and CO2) were measured by an eddy covariance (EC)
system. The EC system includes an open-path CO2/H2O gas
analyzer (LICOR, LI-7200, USA) and an ultrasonic anemome-
ter (Metek,  GmBH, Germany),  also installed at  a height of
2.5 m. The sample frequency of an EC system is 10 Hz. The
10-Hz raw data were processed using the EddyUH software
(Mammarella et al., 2016). Spikes in the data due to instru-
ment  malfunction,  weather,  and  physical  noise  were
removed (Vickers and Mahrt,  1997; Foken et  al.,  2005).  A
double rotation was applied to align the x-axis into the mean
horizontal wind direction and rotated the wind velocity com-
ponents into a natural coordinate system (Kaimal and Finni-
gan,  1994).  The  30-min  momentum flux  ( ),  sensible  heat

flux (H), and latent heat flux (LE) were calculated using the
eddy covariance method as follows: 

τ = −ρu∗2 , (1)
 

H = ρCpw′Ta
′
, (2)

 

LE = λρw′q′ , (3)

τ ρ
u∗ Cp

w Ta

λ
q

where  is the momentum flux; H is latent heat flux;  is air
density, is the friction velocity;  is the specific heat of
air at constant pressure;  is the vertical wind speed;  is
air  temperature;  LE  is  latent  heat  flux;  is  latent  heat  of
vaporization;  is  the  specific  humidity  of  air.  Positive
fluxes are defined as upwards. Corrections for density fluctua-
tions  and  frequency  losses  were  made  (Webb  et al.,  1980;
Lee et al., 2005; Mammarella et al., 2009; Foken et al., 2012).

The footprint of the EC site was calculated using the foot-
print  model  proposed  by Kljun  et al.  (2015)  from  30-min
data  in  2016  (Fig.  2).  The  average  source  area  responsible
for contributing 90% of the flux ranges from 152 to 209 m
in all directions. When the wind blows from the 110°–205°
sector,  the  peninsula  mainly  affects  flux  exchange.  There-
fore,  the  flux  data  from  this  sector  were  filtered.  Overall,
60.77% of H and 60.19% of LE data were selected to analyze
the characteristics of lake–atmosphere interactions.
 

2.2.    Lake surface temperature and energy balance

TsLake surface temperature ( ) is a key variable influenc-
ing  turbulent  exchange  between  the  water  surface  and  the
atmosphere.  It  can be derived from the longwave radiation
as follows: 

εσTs
4 = L↑− (1−ε)L↓ (4)

ε = 0.97 σ = 5.67×10−8

L↑
where  is  surface  emissivity; 
W m–2 K–4 is  the Stefan-Bolzmann constant;  is  upward

 

 

Fig.  1. The measurement  platform above  Lake  Vanajavesi.  The  blue  (black)  point  represents  the  location  of  Lake
Vanajavesi (the measurement site).
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L↓longwave radiation; is downward longwave radiation.
Lake  surface  energy  balance  is  usually  defined  as

(Nordbo et al., 2011): 

Rn−∆Q = H+LE+∆QB+∆QF +∆QP , (5)

∆Q

∆QB

∆QF

∆QP

∆Q

where Rn is the net radiation;  is the change of heat storage
in the lake per  unit  area;  H is  the sensible heat  flux;  LE is
the latent heat flux;  is the heat flux into the bottom sedi-
ments;  is the net heat flux from lake runoff and outlet;

 is  the  heat  flux  due  to  precipitation.  The  signs  of  H
and LE are positive upwards,  is positive when the lake
gains  heat  and  the  rest  are  positive  downwards.  The  last
three terms are small and can be neglected. Then Eq. (2) can
be simplified as: 

Rn−∆Q ≈ H+LE , (6)

Rn−∆Q

∆Q

where  is  the  available  energy.  Units  of  all  fluxes
are W m–2.  The change in heat storage of the lake per unit
area ( ) can be calculated from Eq. (3) as: 

∆Q = Rn−H+LE . (7)
 

2.3.    Surface roughness and bulk transfer coefficients

The surface  roughness  length and bulk transfer  coeffi-
cients  were  calculated  in  this  study  to  characterize  the
lake–atmosphere  exchange.  According  to  Monin-Obukhov
similarity  theory,  the  wind  profile  in  the  surface  layer  can
be written as (Stull, 1988): 

κU
u∗
= ln

z−d
z0m
−ψm (ζ) , (8)

κ = 0.4
u∗

z0m ψm (ζ)
ζ = z/L

where  is  the  von  Kármán  constant; U is  the  wind
speed;  is the friction velocity; z is measurement height, d
is displacement height (can be set to zero for lake surface);

 is the aerodynamic roughness length;  is the stabil-
ity function of wind profile;  is the stability parame-
ter. L is the Obukhov length, which is defined as follows: 

L =
−ρu∗(Ta+273.16)(1+0.61q)

kg
[

H
Cp
+0.61

(Ta+273.16)LE
λ

] . (9)

z0mThe aerodynamic roughness length  can be derived
from Eq. (8) as: 

z0m = zexp
[
−κU

u∗
−ψm(ζ)

]
, (10)

  ψm = 2ln
(

1+ x
2

)
+ ln

(
1+ x2

2

)
−2arctan

(
x+

π

2

)
ζ < 0

ψm = −5ζ ζ > 0
,

(11)
 

x = (1−16ζ)
1
4 . (12)

z0hThe  thermodynamic  roughness  length  can  be
derived through the following formulae (Dyer, 1974; Verhoef
et al., 1997): 

ln
z0m

z0h
=
κu∗(Ts−Ta)

H/ρCp
−

[
ln

z−d
z0m
−ψh (ζ)

]
, (13)

  ψh (ζ) = 2ln
(

1+ x2

2

)
ζ < 0

ψh (ζ) = −5ζ ζ > 0
, (14)

Ts Ta

ρ Cp

ψh (ζ)

where  is lake surface temperature;  is air temperature
at height z; H is sensible heat flux;  is air density;  is the
specific heat of air at constant pressure;  is the stability
function of the temperature profile.

In  the  surface  layer,  the  bulk  transfer  coefficients  for
momentum,  heat,  and  water  vapor  can  be  derived  as
(Andreas, 1987): 



Cd =
τ

ρU2

Ch =
H

ρcpU(Ts−Ta)

Cq =
LE

ρλU(qs−q)

, (15)

Cd Ch Cq

λ

qs

q

where , , and  are the bulk transfer coefficients for
momentum,  heat,  and  water  vapor,  respectively;  is  the
latent heat of vaporization;  is the specific humidity of the
lake surface;  is the specific humidity at height z.
 

 

Fig.  2. Footprint  climatology  for  the  EC  site.  The  white
contours  represent  the  percentage  of  the  accumulated  flux
footprint  from 10%–90% in increments of 10%. The blue dot
indicates the location of the EC tower. The satellite photograph
was taken from Google Earth.
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3.    Results and discussion
 

3.1.    Meteorological conditions

The  meteorological  conditions  at  Vanajavesi  Lake  in
2016  are  shown in Fig.  3.  The  annual  air  temperature  was
6.52°C  in  2016.  The  monthly  average  air  temperature  was
below zero in winter and early spring. January was the coldest
month,  with  an  average  air  temperature  of –3.03°C.  July
was the warmest month, with an average air temperature of
17.88°C.  The  average  daily  temperature  range  was  highest
in December (25.07°C) and lowest in August (12.3°C). The
average lake surface temperature during the ice-free season
(April–October)  was  11.74°C.  It  was  highest  in  July;  the
same was found for Lake Lappajärvi, also located in southern
Finland  (Rontu  et al.,  2019).  The  lake  surface  temperature
was lower than the air temperature in April and May, while
in October, it was higher.

The prevailing wind throughout the year was southwest-
erly (Fig. 3b). The average wind speed was 3.06 m s–1. On

the seasonal scale, the daily wind speed in winter was larger
than  in  other  seasons.  The  average  wind  speeds  in  spring,
summer,  autumn,  and  winter  were  3.13,  2.11,  3.18,  and
3.80  m  s–1,  respectively.  The  daily  wind  speed  reached  its
maximum in December (8.37 m s–1)  and minimum in May
(0.66 m s–1).
 

3.2.    Radiation

Characteristics of radiation transfer at Lake Vanajavesi
from March 2016 through January 2017 are shown in Fig. 4
(radiation data in Jan. 2016 and Feb. 2016 was missing). On
a daily scale, the solar radiation reached its peak (about 600
W m–2 in May) at 1300 LST (LST= UTC+8 hours),  which
was similar to that of mid-latitude lakes (Wang et al., 2014).
From the perspective of the seasonal scale, the solar radiation
in  summer  was  higher  than  in  other  seasons,  peaking  in
May and reaching its minimum in December. The outgoing
shortwave  radiation  in  winter  and  early  spring  was  much
higher than during any other time of the year. In March, the

 

 

Fig.  3. (a)  Monthly  averaged  air  temperature  and  lake  surface  temperature.  (b)  The
wind rose observed at Lake Vanajavesi.
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outgoing  shortwave  radiation  could  reach  167  W  m–2 at
local  noon;  however,  in  other  months,  it  was  less  than
60  W  m–2.  The  variation  of  outgoing  shortwave  radiation
was mainly affected by surface albedo. The solar elevation
angle, ice cover, and attributes of the water controlled the sea-
sonal variations of surface albedo (Li et al., 2021; Du et al.,
2023). In winter and early spring, ice and snow covered the
lake.  During  that  period,  the  surface  albedo  was  much
higher than in summer when the lake surface is liquid water.
It  follows  that  the  surface  albedo  peaked  in  January  (0.8)

and was at a minimum in July (0.1). In summer, it increased
after  sunrise,  reaching  a  certain  level  rapidly  (less  than
50 W m–2) and lasted until sunset.

The  incoming  longwave  radiation  ranged  from  263  to
366 W m–2 (Fig. 4c). It was largely affected by atmospheric
moisture  and  the  amount  and  height  of  clouds  (de  Kok
et al., 2020). The outgoing longwave radiation ranged from
294 to 408 W m–2 (Fig. 4d) and was positively correlated to
the surface water temperature. On the daily timescale, both
incoming  and  outgoing  longwave  radiation  peaked  in  the

 

 

Fig. 4. (a) Monthly averaged diurnal cycle of downward shortwave radiation; (b) monthly averaged diurnal
cycle  of  upward  shortwave  radiation,  the  shaded  area  indicates  ice  cover  period;  (c)  monthly  averaged
diurnal  cycle  of  downward  longwave  radiation;  (d)  monthly  averaged  diurnal  cycle  of  upward  longwave
radiation; (e) monthly averaged albedo.
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afternoon  (nearly  1500  LST)  and  obtained  their  lowest
value in the early morning (about 0600 LST). The longwave
radiation was  higher  in  summer than that  in  other  seasons.
Both incoming and outgoing longwave radiation were highest
in July and lowest in January.
 

3.3.    Energy exchange

The  monthly  averaged  diurnal  cycle  of  energy
exchanges is shown in Fig. 5. The net radiation was calculated
from the four components of radiation shown in Fig. 4. The
change  of  stored  heat  flux  in  the  lake  was  calculated  from
Eq.  (4).  The  net  radiation  and  change  in  lake-storage  heat
flux  data  were  missing  in  January  and  February  in  2016.
The net radiation ranged from –81 W m–2 to 505 W m–2. On
a seasonal timescale, the net radiation peaked in May and tran-
sitioned  to  mainly  negative  values  in  December.  On  the
daily  timescale,  the  net  radiation  peaked  at  noon  (1300-

1400  LST).  The  daily  variation  amplitude  was  largest  in
May.  The  pattern  of  the  change  in  lake-storage  heat  flux
was  similar  to  that  of  net  radiation.  It  ranged  from
–241 W m–2 to 452 W m–2. The diurnal variation was higher
than that at Lake Valkea-Kotinen, also in southern Finland.
This  may  be  a  consequence  of  Lake  Vanajavesi  being
deeper  and  larger,  which  leads  to  higher  wind  speeds  and
stronger  mechanically  induced  mixing  (Nordbo  et al.,
2011).

The  sensible  heat  flux  (H)  ranged  from –27 W m–2 to
56 W m–2. It was mainly negative in winter, indicating that
the  lake  released  heat  to  the  atmosphere.  On  the  daily
timescale, the sensible heat flux reached its maximum in the
early morning and was lowest in the afternoon from April to
October. The diurnal variation of the sensible heat flux was
small during the ice-covered period when the temperature gra-
dient between the lake and the atmosphere was small. During

 

 

Fig.  5. (a)  The monthly averaged diurnal  cycle  of  net  radiation;  (b)  monthly averaged diurnal  cycle  of  the
change  in  lake  storage  heat  flux;  (c)  monthly  averaged  diurnal  cycle  of  sensible  heat  flux;  (d)  monthly
averaged diurnal cycle of latent heat flux; (e) monthly averaged Bowen ratio.
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that  time,  the  Bowen  ratio  (sensible  heat  flux  divided  by
latent heat flux) was greater than 1, indicating that the avail-
able  energy  was  primarily  due  to  the  sensible  heat  flux.
While during the ice-free season, the latent heat flux domi-
nated. In summer, the Bowen ratio was smaller than 0.4. It
was similar to the Bowen ratio of the Ross Barnett Reservoir
in Mississippi, suggesting that most of the available energy
released from the lake was consumed by evaporation rather
than  through  heating  the  atmosphere  by  sensible  heat  flux
(Liu et al., 2009).

The latent heat flux (LE) was nearly zero during ice-cov-
ered periods and increased after the ice began to melt.  The
latent  heat  flux  reached  its  maximum  in  June  when  the
vapor pressure deficit was high. The latent heat flux showed
obvious diurnal variation during the ice-free season. The diur-
nal variation of latent heat flux was opposite to that of sensible
heat  flux,  reaching  its  minimum  value  in  the  morning  and
peaking in the afternoon. In the evening, the latent heat flux
was  still  positive,  indicating  nocturnal  evaporation  of  the
water surface, which lies in contrast with the other land sur-
faces, where the latent heat flux was often negligibly small

during the night (Xiang et al., 2017).
The  seasonal  variation  of  energy  fluxes  is  shown  in

Fig. 6 (the net radiation and change in lake storage heat flux
data were missing in January–February, 2016). The monthly
average  net  radiation  was  positive  from  March–September
and  negative  in  other  months.  It  was  highest  in  June
(143.47  W m–2)  and  lowest  in  December  (–21.95  W m–2).
The monthly averaged latent  heat  flux also peaked in  June
(99.01 W m–2) and declined after that. The seasonal variation
of  monthly  average  sensible  heat  flux  was  opposite  to  that
of  latent  heat  flux.  It  was  19.37  W  m–2 in  June  and
increased after that. The monthly average sensible heat flux
was  at  its  maximum  in  November  (43.45  W  m–2).  During
the  ice-covered  season,  the  monthly  average  sensible  heat
flux  was  negative,  indicating  that  the  lake  released  heat  to
the  atmosphere.  The  monthly  averaged  lake  storage  heat
flux  was  positive  from  March–July  and  negative  in  other
months. It peaked in May (94.13 W m–2) and was at a mini-
mum in October (–102.63 W m–2).

The  lake  tended  to  regulate  its  regional  energy
exchange on the seasonal timescale (Fig.  6b).  After the ice

 

 

Fig.  6. (a)  The  seasonal  variation  of  energy  fluxes  and  (b)  cumulative  heat  storage
change of the lake.
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began  to  melt,  the  lake  started  to  accumulate  heat  in  its
water,  acting  as  a  heat  sink.  The  accumulated  heat  flux
reached  its  maximum  on  August  14  (233.58  MJ  m–2),  a
value  similar  to  Lake  Valkea-Kotinen  (232  MJ  m–2),  also
located in southern Finland (Nordbo et al., 2011). After that,
the lake began to release heat. The release period (74 days)
was  shorter  than  the  accumulation  period  (118  days).  This
was partly due to the lake overturning in November when it
rapidly  released the  heat  stored  in  deep water  to  the  atmo-
sphere.

Ts−Ta

U (Ts−Ta)]

ew− ea
U (ew− ea)

U (Ts−Ta) U (ew− ea)

Factors affecting sensible and latent heat flux on different
timescales are shown in Fig. 7. All available timesteps were
used to calculate correlations for the whole day. For the calcu-
lation  of  correlations  during  the  daytime,  only  timesteps
whose  downward  shortwave  radiation  was  positive  were
used.  The  other  timesteps  were  used  for  the  calculation  of
nighttime factors. The sensible heat flux was mainly governed
by the lake-air temperature difference ( ), and the prod-
uct  of  lake-air  temperature  difference  and  wind  speed
[ .  Their  correlation  coefficients  ranged  from
0.78  to  0.95  and  increased  with  longer  timescales.  The
latent  heat  flux  was  mainly  controlled  by  vapor  pressure
deficit  ( ),  and  the  product  of  vapor  pressure  deficit
and  wind  speed  [ ].  Wind  speed  had  a  positive
effect on both the sensible and latent heat fluxes. The close
relationship between  and H, and and
LE were also observed in other lakes (Du et al., 2018b). Rela-
tive humidity negatively affected latent heat flux, especially
on a monthly timescale.

Driving factors for sensible and latent heat flux during
daytime and nighttime were mostly the same, but there were
still some differences. On a monthly timescale, net radiation
had a positive effect on heat flux during the daytime, while
at night, it transitioned to a negative effect. Increases in day-
time  net  radiation  promoted  stronger  sensible  and  latent
heat exchanges.  While at  night,  the net radiation attained a
negative  value.  The  smaller  the  value,  the  stronger  the
energy exchange. It is noted that in some other studies, net

radiation  played  a  minor  role  in  surface  energy  fluxes  on
daily  and  monthly  scales,  indicating  that  observation  data
over more lakes is needed to adequately describe the details
of  the  energy  exchange  (Lenters  et al.,  2005; Liu  et al.,
2009).

U (Ts−Ta)
U (ew− ea)

Energy  exchange  across  the  lake-atmosphere  interface
is also affected by other factors (Gao et al., 2018; Zhao and
Liu,  2018; Zeng  and  Zhang,  2020; Pierre  et al.,  2022).
Meng et al. (2020) found that the stratification of the atmo-
spheric surface layer played an important role in regulating
the  turbulent  fluxes.  Under  stable  conditions,  the  sensible
heat flux was found to be closely related to wind speed and
the lake-air temperature difference, while under unstable con-
ditions,  they  showed  no  obvious  relationship.  The  total
cloud  cover  (sunshine  duration)  had  a  positive  (negative)
effect on energy exchange on daily and monthly timescales
(Du  et al.,  2018a).  Weather  conditions  also  affected  the
energy exchange between the lake and the atmosphere. The
maximum (minimum) heat fluxes usually followed the pas-
sage of  low (high) pressure in northern Lake Huron (Laird
et al.,  2002).  On different  timescales,  however, 
and were  the  most  common  and  critical  factors
in determining sensible and latent heat fluxes.
 

3.4.    Surface  roughness  lengths  and  bulk  transfer
coefficients

The  aerodynamic  and  aerothermodynamic  roughness
lengths (z0m and z0h)  and bulk transfer coefficients (Cd, Ch,
and Cq)  were  calculated  when  there  was  no  precipitation
(parameters for calculating Ch and Cq were missing in some
months). The annual mean values of z0m and z0h were 3.25 ×
10–2 m and 4.59 × 10–3 m, respectively.  The ratio between
z0m and z0h was 7.08. z0m was large in winter and spring, possi-
bly a consequence of the strong winds and high waves com-
mon to that period (Fig. 8). Seasonal variation of z0h was dif-
ferent from z0m. It was high in summer and autumn and low
in winter.

The  annual  mean  values  of  the  bulk  transfer  coeffi-

 

 

Fig. 7. Impact factors of sensible heat flux for (a) the whole day; (b) daytime; (c) nighttime. The impact factors of latent heat
flux during (d) the whole day; (e) daytime; (f) nighttime. Asterisks (*) represent statistical significance at p ≤ 0.05.
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cients, Cd, Ch,  and Cq,  were  1.98  ×  10–3,  1.62  ×  10–3,  and
1.31 × 10–3, respectively. Cd was similar to the drag coeffi-
cients  calculated  by  the  eddy-covariance  technique  using
data  from  more  than  30  reservoirs  and  lakes  of  different
depths and sizes (Guseva et al., 2023). Cd was largest in winter
and summer, while Ch and Cq were large in summer. When
the atmospheric stratification was unstable (most of the time
over the lake), the bulk transfer coefficients decreased as the
wind  speed  increased.  The  ratio  between Cd and Ch was
1.22, and Cq/Ch was 0.81. This differs from what some numer-
ical and empirical models assume (Stepanenko et al., 2014).
For  example,  the  WRF  and  CLM4.5  employ  a  constant
value for the drag coefficient and assume Cq = Ch (Subin et
al.,  2012; Oleson  et  al.,  2013).  This  approach  results  in
biased estimations of lake temperature and evaporation and
leads to errors in weather and climate prediction models, indi-
cating  that  the  parameterization  of  roughness  lengths  in
numerical models needs to be improved (Drews, 2013; Wool-
way et al., 2015; Chen et al., 2020; Sun et al., 2020).

Surface roughness lengths and bulk transfer coefficients
can vary with the size and depth of the lake. Due to a larger
size  and  wind-induced  waves,  the  bulk  transfer  coefficient
for momentum of Lake Vanajavesi (1.98 × 10–3) was larger
than that of a small lake (1.40 × 10–3) in the Nam-Co Basin,
southwest China (Wang et al., 2019). The roughness length
and  standard  bulk  transfer  coefficient  for  momentum were
80% and 21% higher, respectively, for a large lake than for
a small lake, while the roughness lengths and standard bulk
transfer coefficient for heat and water are one order of magni-
tude and 7% lower, respectively (Wang et al., 2019). Com-
pared with deep water, the surface temperature in a shallow
lake was more sensitive to the roughness lengths (Li et al.,
2018). These results indicate that lake area and depth should

be considered in  the parameterization of  surface roughness
lengths and bulk transfer coefficients.
 

3.5.    Effects of cold fronts on energy exchange

The influence of variable cold frontal activities on the sur-
face energy fluxes was investigated during the ice-free sea-
son. The ice-free season was considered to begin on the day
when  the  surface  albedo  was  permanently  reduced  to  less
than a tenth, α < 0.1, and ends on the day when α > 0.5 (Ala-
Könni  et al.,  2022).  In  2016,  the  ice-free  season  lasted  for
231 days. It began on April 18 and ended on December 5.

θe

According  to Arrillaga  et al.  (2018),  cold  front  days
were identified as days whose equivalent potential tempera-
ture variation in 6 h was lower than 1.45 K at 700 hPa. The
variation of equivalent potential temperature ( ) was calcu-
lated as follows: 

∆θe

∆t
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∆θ
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∆r
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θ

where  is  the  potential  temperature; r is  the  water  vapor
mixing ratio, = 2.46 × 106 J kg–1 is the latent heat of vapor-
ization; =1005 J kg–1 K–1 is the specific heat of dry air
at  constant  pressure.  The  and r data  at  700  hPa  were
sourced from ECMWF ERA5 data (https://www.ecmwf.int/
en/forecasts/dataset/ecmwf-reanalysis-v5).

The passage of cold fronts was usually accompanied by
decreased air temperature and increased wind speed, which
resulted in pulses of sensible and latent heat flux. A sensible
(or  latent)  heat  flux  pulse  was  identified  as  days  when  the
daily  average  sensible  (or  latent)  heat  flux  was  larger  than
1.5 times the 10-day running mean (Liu et al., 2011). When
a sensible (or latent) heat flux pulse occurred within the pas-

 

 

Fig.  8. (a)  Monthly  averaged  aerodynamic  roughness  length;  (b)  monthly  averaged  bulk
transfer coefficients (The bars indicate the standard deviation).
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sage of cold fronts, it was determined to be an effect of cold
fronts  on  surface  energy exchange.  Within  the  cold  frontal
days  of  2016,  a  total  of  28  sensible  heat  flux  pluses  (H
pulses)  and  17  latent  heat  flux  pulses  (LE  pulses)  were
found, covering 43 and 31 days (18.61% and 13.42% of the
ice-free season).

A typical H and LE pulse is  presented in Fig.  9.  On 8
June 2016,  a  cold front  passed over  the  observation site  in
Vanajavesi  Lake.  The  cold  front  arrived  at  0200  LST  on
June  8  and  lasted  about  59  hours.  It  led  to  a  dramatic
increase in wind speed and a rapid decrease in air tempera-
ture.  When  the  cold  front  passed  the  observation  site,  the
wind speed increased by approximately 8.28 m s–1, and the
wind  direction  changed  from  southerly  to  northwesterly.
Meanwhile, the air temperature dropped by 9.94°C, and the
water temperature decreased by 5.49°C. The air vapor pres-
sure  decreased  from  10.7  hPa  to  4.1  hPa.  As  the  surface
vapor pressure is well documented to equate to the saturation
vapor  pressure  at  the  lake-atmosphere  interface,  the  vapor
pressure  deficit  between  the  lake  and  the  atmosphere
became  larger  (Ambaum,  2020; Zhao  et al.,  2022).  The

wind  speed  and  temperature  difference  (vapor  pressure
deficit)  were  the  main  factors  that  affected  the  sensible
(latent)  heat  flux.  As  a  result,  the  sensible  heat  flux  (H)
increased from –25.48 W m–2 to 151 W m–2, and the latent
heat  flux increased from 29.46 W m–2 to  398.86 W m–2 in
Lake Vanajavesi. The sensible and latent heat flux pulse in
Lake Vanajavesi was similar to the heat flux exchange in a
reservoir in Central Brazil. As a cold front passed the reser-
voir,  the  sensible  heat  flux  increased  to  a  value  five  times
larger than the initial energy flux (Curtarelli et al., 2013). Dur-
ing the entire ice-free season, the H (LE) pulses contributed
about 49.44% (34.89%) to the total H (LE), indicating that
cold fronts significantly affect the surface energy exchange.

The changes in air mass properties caused by the passage
of cold fronts affected lake–atmosphere exchange processes
and  significantly  enhanced  the  surface  energy  fluxes.  This
phenomenon  has  also  been  confirmed  by  eddy  covariance
observations in other lakes. Based on eddy covariance obser-
vations  in  the  Ross  Barnett  Reservoir  (in  Mississippi), Liu
et al.  (2009)  found  that  during  the  passage  of  a  cold  front,
the latent and sensible heat fluxes increased by 7.3 and 2.7

 

 

Fig.  9. Time-series  data  of  the  30-min  mean  (a)  sensible  heat  flux,  (b)  latent  heat  flux,  (c)  wind  speed,  (d)  air
temperature and water surface temperature, (e) vapor pressure for the water-air interface and the overlying air, and
(f) days and contribution of H and LE pulses. The data represent a typical H and LE pulse as a result of a high-wind
event behind a cold front that passed over the site on 8 June 2016. The shaded area in (a) indicates the duration of the
cold front.
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times,  respectively.  Compared to deep lakes,  shallow lakes
respond  faster  to  the  passage  of  cold  fronts  (Liu  et al.,
2019).  In  Taihu  Lake,  located  in  Jiangsu  Province,  eastern
China,  cold  frontal  days  only  accounted  for  16.4%  of  the
cold season but  contributed 34.9% and 51.7% of the latent
and sensible heat fluxes for the total cold season, respectively
(Liu et al., 2019). There is currently little research on quantify-
ing the impact of cold frontal activities on lake–atmosphere
interactions. Exploring the responses of lake surface energy
fluxes  to  cold  frontal  events  can  provide  a  scientific  basis
for  predicting  the  impacts  of  extreme cold  events  on  lakes
in the future.
 

4.    Conclusions

Based  on  observational  data  from  Lake  Vanajavesi  in
2016,  characteristics  of  energy  fluxes  and  cold  frontal
effects  on  energy  exchange  were  investigated.  The  annual
air temperature and wind speed were 6.52°C and 3.06 m s–1

in 2016. The air temperature was highest in July and lowest
in January. The seasonal variation of wind speed was opposite
to air temperature. It peaked in December and had its mini-
mum value in May. The surface albedo was also high in winter
and  low  in  late  spring  and  summer.  In  winter  and  early
spring, when the lake surface was covered by ice and snow,
the  monthly  average  albedo  exceeded  0.5.  During  that
period, the upward shortwave radiation reached its maximum
value of 167 W m–2 at noon. The seasonal variation of surface
albedo  was  mainly  controlled  by  the  solar  elevation  angle,
ice cover, and the attributes of the water.

The  energy  fluxes  show  obvious  diurnal  and  seasonal
variations.  The  energy  fluxes  were  high  in  late  spring  and
summer and low in  winter  when the  lake  was  ice-covered.
The net radiation and the change in heat storage of the lake
per unit area peaked at noon and was low at night. The sensible
heat flux had its maximum value in the morning and minimum
value  in  the  afternoon.  In  contrast,  the  diurnal  variation  of
latent heat flux demonstrated the opposite pattern. The lake
acted as a heat sink in spring and summer and a heat source
in autumn and winter.  The available energy in the daytime
was mainly dominated by latent heat flux during the ice-free
season,  while  during  the  ice-covered  season,  the  sensible
heat flux was dominant. The sensible heat flux was mainly
affected by the lake-air temperature difference and the prod-
uct  of  the  lake-air  temperature  difference  and  the  wind
speed, whereas the latent heat flux was controlled by vapor
pressure  deficit  and  the  product  of  vapor  pressure  deficit
and wind speed.

Characteristics  of  surface  roughness  lengths  and  bulk
transfer coefficients were also analyzed. The annual mean val-
ues  of  aerodynamic  and  aerothermodynamic  roughness
lengths (z0m and z0h) were 3.25 × 10–2 m and 4.59 ×10–3 m.
The  value  of  aerothermodynamic  roughness  length  was
approximately  one-seventh  of  the  aerodynamic  roughness
length.  Owning  to  the  presence  of  strong  winds  and  high
waves, the aerodynamic roughness length had a larger value

in winter and spring. The annual mean value of bulk transfer
coefficients (Cd, Ch, and Cq) were 1.98 × 10–3, 1.62 × 10–3,
and  1.31  ×  10–3,  respectively.  Under  unstable  conditions,
the  bulk  transfer  coefficients  decreased  as  wind  speed
increased.

Cold fronts significantly impact the surface energy bud-
get and evaporation over water. Along with cold-frontal pas-
sage,  there  appeared  to  be  a  rapid  increase  in  wind  speed
and a decrease in temperature.  Due to its  large heat  capac-
ity, the cooling rate of the lake was slower than that of the
atmosphere. Consequently, the lake-atmosphere temperature
difference and vapor pressure deficit became larger, leading
to sensible and latent  heat  pulses,  respectively.  Cold fronts
contributed 49.44% and 34.89% of sensible and latent heat
exchange during the ice-free season.

These results demonstrate features of energy fluxes and
cold-frontal  effects  on  energy  exchange  at  a  boreal  lake.
The consequences may vary depending on lake location, cov-
erage area, water depth, mixing regime, and eutrophication
status.  Future  research,  including  strengthening  long-term
observations  of  lake  variables  from  space  and  developing
advanced parameterization of lake-atmosphere interaction pro-
cesses,  will  improve  our  understanding  of  lake  responses
and their associated feedback to climate change. 
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